Helium in California Groundwater

JUSTIN T. KULONGOSKI¹, BRADLEY K. ESSER², KENNETH BELITZ³ AND MIRANDA S. FRAM⁴

¹USGS California Water Science Cent. (kulongos@usgs.gov)
²Chemical Sciences Division, LLNL, Livermore, CA
³USGS New England Water Sci. Center, Northborough, MA
⁴USGS California Water Science Center, Sacramento, CA

Helium isotopes were measured in ~1,700 groundwater samples collected for the GAMA Priority Basin Project, a collaboration of the California Water Boards, USGS, and LLNL, in order to investigate the influence of geologic age, lithology, and tectonic structure on the spatial variability of ³He/⁴He in California groundwater. ³He/⁴He ratios, corrected for air-entrainment, ranged from 0.01 R_A to 5.10 R_A (R_A is the ³He/⁴He of air 1.4 x 10⁻⁶). Previous work identified mechanisms that introduce ³He (magmatism, seismicity) and ⁴He (erosion, in-situ and deep-crustal production). To identify sources of He and explain variations in the ³He/⁴He state wide, statistical tests were applied to evaluate correlations between the geology mapped at the well, the well's proximity to faults, and ³He/⁴He.

Correlations between ³He/⁴He and categorical explanatory factors including rock type (sedimentary, plutonic, volcanic); Cenozoic age (Holocene, Pleistocene, Tertiary); and sediment type (alluvium, glacial, marine, non-marine, sand, volcanic); and correlation between the continuous variables ³He/⁴He and the distance of a well to the nearest fault were evaluated.

Statistical tests demonstrate that ${}^{3}\text{He}{}^{4}\text{He}$ ratios in groundwater were positively correlated (p-value <0.05) to fault proximity. The increase of ${}^{3}\text{He}{}^{4}\text{He}$ near faults suggests seismic activity as a source of ${}^{3}\text{He}{}^{4}\text{He}$ near faults suggests differences in ${}^{3}\text{He}{}^{4}\text{He}$ between the categorical rock types: ${}^{3}\text{He}{}^{4}\text{He}$ is higher in volcanic than in plutonic rocks, and higher in plutonic than in sedimentary rocks. Higher ${}^{3}\text{He}{}^{4}\text{He}$ in wells located in Cenozoic volcanics may be explained by mantle ${}^{3}\text{He}$ from relatively recent magmatic activity. Other comparisons reveal no significant correlations. Identifying the factors that explain the spatial variations in ${}^{3}\text{He}{}^{4}\text{He}$ is the first step towards characterizing groundwater affected by seismic activity, ${}^{3}\text{He}$ from tritium decay, long residence times, and crustal degassing.