Trace element partitioning in density fractions of a Highveld (#4) coal, South Africa

ALLAN KOLKER¹, CONNIE SENIOR², CHRIS VAN ALPHEN³, AND ALAN KOENIG⁴

¹U.S. Geological Survey, Reston, VA 20192 USA akolker@usgs.gov

²ADA-ES, Inc. Highlands Ranch, CO 80129 USA ³Eskom Holdings SOC Ltd., Johannesburg, South Africa

⁴U.S. Geological Survey, Denver, CO 80225 USA

Coal production in South Africa has traditionally been concentrated in the Highveld region of Mpumalanga Province where the contiguous Witbank/Highveld coals supply Eskom power stations and other industries. Low-ash washed coals are generally produced for export whereas the remaining fractions comprise feed coals utilized by Eskom. If the export yield is low, run-of-mine coal, or a de-stoned product in which a discard fraction has been removed, are burned. Under a agreement between the cooperative United Nations Environment Programme and the U.S. Geological Survey, we compared density separates of a #4 coal, an important coal used for power generation in South Africa, to determine the impact of the washing process on mercury and trace element contents.

Trace element contents were determined for 8 density separates having ash contents ranging from 15.5 to 71.2% (dry basis). The separation process is effective in concentrating pyrite in the high-ash, higher density fractions. Bulk Hg content is well correlated with the amount of pyrite (as pyritic sulphur) present, and with ash yield. The density separates predict mercury contents ranging from \leq 50 ppb for export material to 344 ppb for material that is discarded. Laser ablation ICP-MS confirms residence of Hg in pyrite at ppm levels, together with variable enrichment of Pb, Mo, As, and Tl. Unlike Hg, Cl is partitioned into the low-ash fractions. Results illustrate differences in the quality of coals produced for export and those used for domestic power generation in South Africa.