On the role of ²¹⁰Bi on the apparent disequilibrium of ²¹⁰Pb-²¹⁰Po pair in the sea

S. H. KIM*, G. H. HONG, Y. I. KIM AND S. KIM

Korea Institute of Ocean Science & Technology, Ansan 426-744, Rep. of Korea (*correspondence: shkim@kiost.ac)

The $^{210}Po~(t_{1/2\,=\,138~days})$ - $^{210}Pb~(t_{1/2\,=\,22.3~years})$ pair as well as that in ^{238}U - ^{234}Th pair has been used for estimating export fluxes of particulate organic carbon in the ocean. However, the role of ²¹⁰Bi has not drawn sufficient attention in the ²¹⁰Pb-²¹⁰Po disequilibrium studies although 210Bi as an intermediate decay product of ²¹⁰Po and substantially long half-life (5.01 days) to participate in the particle processes occurring in the sea, partly due to its short half-life to determine in situ concentration aboard the ship. Most current studies assume that 210Bi is not particle reactive but conservative. However, it is known that ²¹⁰Bi is more enriched in particulate matter than ²¹⁰Po and ²¹⁰Pb as much as an order of magnitude. This indicates that the deficiency of ²¹⁰Po to ²¹⁰Pb activities $(A_{Pb}^{t} - A_{Po}^{t})$ in the surface ocean may include the deficiency of ²¹⁰Bi to ²¹⁰Pb $(A_{Pb}^{t} - A_{Bi}^{t})$ resulting from sinking of ²¹⁰Bi attached to the particle in the ocean. We developed a model to elucidate a role of ²¹⁰Bi in the behavior of ²¹⁰Po-²¹⁰Pb pair in the ocean. We assumed that the activities in the dissolved and particulate phases of 210Pb, 210Bi and 210Po in a given water column are determined by the concentration of particle in water column, input and output, distribution coefficients between dissolved and particulate phases, decay constants of these radionuclides. We estimated the ²¹⁰Bi contribution to the ²¹⁰Pb-²¹⁰Po activity difference in seawater $(A_{Pb}^{\ t} - A_{Bi}^{\ t})/(A_{Pb}^{\ t} - A_{Po}^{\ t})$ as much as 78% and the ²¹⁰Bi decay-corrected *in-situ* ²¹⁰Po activity in stored seawater samples was different as much as 30%. These results show that ²¹⁰Bi is very important to determine the behavior of ²¹⁰Po-²¹⁰Pb pair disequilibrium at sea.