Performance of the Helix-MC multicollector mass spectrometer resolution of argon isobaric interferences

M. HONDA¹*, X. ZHANG¹, D. PHILLIPS², E. MATCHAN², S. SZCZEPANSKI², M. DEERBERG³, D. HAMILTON³, M. KRUMMEN³ AND J.B. SCHWIETERS³

¹Research School of Earth Sciences, The Australian National University, Canberra, Australia (masahiko.honda@anu.edu.au, dong.zhang@anu.edu.au)
²School of Earth Sciences, The University of Melbourne, Parkville, Australia (dphillips@unimelb.edu.au, ematchan@unimelb.edu.au, sszcz@unimelb.edu.au)
³Thermo Fisher Scientific, Bremen, Germany (michael.deerberg@thermofisher.com, doug.hamilton@themofisher.com, michael.krummen@thermofisher.com, johannes.schwieters@thermofisher.com)

Analyses of noble gas isotopes by multi-collector mass spectrometry substantially improve measurement precision and accuracy, with the potential to revolutionise applications to cosmo- and geo-sciences. Mass resolution and mass resolving power on the H2, Ax and L2 detectors of the Helix-MC noble gas mass spectrometer installed at the Australian National University are approximately 1,800 and 8,000, respectively. The high mass resolution of the L2 collector permits complete separation of the 36 Ar peak from isobaric interferences $^{12}C_3$ and partial separation of H 35 Cl. By adjusting the L2 collector position, interference-free 36 Ar isotope analyses have been achieved.

From a MD-2 biotite standard (collected from the GA1550 Mt Dromedary site), we observed beam intensities for ⁴⁰Ar, $^{36}\text{Ar},\ \text{H}^{35}\text{Cl}$ and $^{12}\text{C}_3$ of 4826, 0.775, 0.027 and 0.024 fA, respectively. Corresponding ⁴⁰Ar/³⁶Ar and ⁴⁰Ar/(³⁶Ar + H³⁵Cl and ¹²C₃) ratios are 6,452 and 6,054, respectively. It is noted that a significant fraction of H35Cl released from MD-2 could not be completely removed by purification procedures, and this interference cannot be corrected by blank subtraction. It is stressed, however, that the very high proportion of radiogenic ⁴⁰Ar to total ⁴⁰Ar released from MD2 biotite means that the correction of atmospheric Ar using either ³⁶Ar or the combined ${}^{36}\text{Ar}$ + H^{35}Cl and ${}^{12}\text{C}_3$ peak, influences the estimation of radiogenic 40 Ar by <0.3%. On the other hand, when 40 Ar/ 36 Ar ratios in samples, such as young basalts, are close to the atmospheric value, corrections for atmospheric 40Ar using interference-corrected ³⁶Ar become more significant.