Representing microbial processing and mineral stabilization of plantderived organic matter in models of terrestrial N isotopes

 $\begin{array}{c} W.\,T.\,BAISDEN^{1*}, E.\,N.\,J.\,BROOKSHIRE^2, J.\,M.\,CRAINE^3\\ AND\,S.\,S.\,PERAKIS^4 \end{array}$

¹National Isotope Centre, GNS Science, Lower Hutt, 5040, New Zealand, (*correspondence: t.baisden@gns.cri.nz)

²Department of Land Resources and Environmental Sciences,

Montana State University, Bozeman, MT, 59717, USA

³Division of Biology, Kansas State University, Manhattan, KS, 66506, USA

⁴Forest and Rangeland Ecosystem Science Center, US Geological Survey, Corvallis, OR, 97331, USA

Stable N isotopes provide insights into the factors shaping ecoystem and global N cycles, but their interpretation can depend on how ¹⁵N and N are modeled. Many analyses simplify ecosystems with a 2-box model representing plant and soil N and ¹⁵N pools without exploring the implications of this simplication, particularly for soils. Here, we examine an alternative formulation that separates soil N into two pools and treats plant N as an ephemeral flow at the timescale of interest. The revised model focuses attention on a pool of plant-derived free particulate organic matter (FPOM) in soil, and a second pool of mineral-associated organic matter (MAOM) stabilized following microbial processing of FPOM This separation into two pools is supported by diverse empirical data across soil aggregate size, density fractions, and soil depth, showing that mineral-associated organic matter (MAOM) displays characteristics associated with microbial processing and is enriched in ¹⁵N relative to plants and FPOM. We evaluate the revised model's potential to better describe the global drivers of $\delta^{15}N$ in response to climate and soil properties using an expanded global dataset of soil $\delta^{15}N$.

By treating soil N as two functionally distinct pools, our model suggests that low soil δ^{15} N values in wetter and cooler climates reflect high FPOM/MAOM ratios, with less microbial N processing. Because the revised model links most N losses to a fast plant-FPOM cycle (with lower δ^{15} N values), it also explains high soil δ^{15} N values in MAOM-dominated tropical soils without requiring enhanced gaseous N losses depleted in ¹⁵N. Conclusions derived from the model therefore differ from previous global analyses. Perhaps most surprisingly, soil C and N pools of differing sensitivity to climate can thus be partitioned using δ^{15} N, without depending on complex methods such as modelling ¹⁴C-derived soil C residence times.