Observations and modeling of sinking particle speeds in the Twilight Zone using ²¹⁰Po-²¹⁰Pb deficit

 $\begin{array}{l} M. \, VILLA^{*1}, F. \, \text{de Soto}^2, F. \, Le \, MOIGNE^3, S. \, GIERING^3, \\ R. \, SANDERS^3 \, \text{and} \, R. \, GARCÍA-TENORIO^1 \end{array}$

¹Universidad de Sevilla, Dpto. Física Aplicada II, 41012, Sevilla, Spain (*correspondence: mvilla@us.es)

²Universidad Pablo de Olavide, Dpto. Sistemas Físicos, Químicos y Naturales, Sevilla, Spain

³Department of Ocean Biogeochemistry and Ecosystems. National Oceanographic Centre, Southampton, UK

A one-box model of ²³⁴Th uptake and removal in the water column is widely used to calculate downward ²³⁴Th and POC flux. The elemental pair of ²¹⁰Po-²¹⁰Pb is an alternative method to estimate carbon fluxes which should offer significant advantages due to its different half-life (138 days) and biogeochemical behaviour. Due to its long half-life, a ²¹⁰Po deficit is maintained below the euphotic zone and penetrates much further into the twilight zone (100-1000 m) than ²³⁴Th. Hence ²¹⁰Po and ²¹⁰Pb profiles and ²¹⁰Po deficit could be used to broad our knowledge of the twilight zone.

To address this question several water column profiles were sampled during two expeditions of RSS Discovery on the North Atlantic, PAP site (summer 2009) and Irminger Basin (summer 2010). The most important contribution of this work is that ²¹⁰Po activity down the water column is modelled using a one-box inverse model. Modelled ²¹⁰Po activities are in very good agreement with the analysed values and the new approach provides information to understand ²¹⁰Po and ²¹⁰Pb concentration profiles on the water column. A key output from the model is average downward sinking velocities. Minimum and maximum values range from 20 m·d⁻¹ at 50 m to 150 m·d⁻¹ at 400 m. Averaged values at PAP and Irminger areas do not follow a clear geographical pattern; however, an increase with depth is observed. Finally, the contribution of slow sinking particles into the twilight zone and its implication to the carbon storage is discussed.

Adsorption experiments of arsenic and lead onto barite

F. SAMPERIO JIMÉNEZ¹, R. E. VILLANUEVA-ESTRADA^{2*}, P. VILLANUEVA-GONZÁLEZ³, C. CANET² AND F. MARTÍN-ROMERO⁴

¹ Facultad de Ingeniería, UNAM
² Instituto de Geofísica, UNAM

(*correspondence: ruth@geofisica.unam.mx)

³ Facultad de Química, UNAM

⁴ Instituto de Geología, UNAM

The work consists in the study of the retentions of arsenic and lead onto the barite surface. The barite sample is from a deposit of Múzquiz (Coahuila, México). The batch adsorption experiments using salts of As(III), As(IV), and Pb(II) was according [1]. A measurement of the pHPZC of the barite sample was determined by acid-base titrations.

	As(V)	As(III)	Pb(II)	
pH adsorption	8.35	8.55	8.45	
$C_{t=0}$ (mg/L)	5.92	9.69	7.07	
Ct=24 h (mg/L)	5.08	9.67	< L.D.	
Adsorption %	14	0.17	100	
R _d (mL/g)	3.6	0.04	2951	

Limit of detection (L.D.) for lead is 0.05 mg/L

Table 1. Results of the adsorption experiment. The adsorption was calculated taking account the concentration of the dissolved species. Calculation of the distribution ratio (R_d) between the solutes and barite mineral was calculated as Griffin *et al.* [1].

The determination of the pH_{pzc} of the barite is about 9.8. The present study shows that the barite could be used as adsorbent for Pb(II). Although the adsorption of arsenic is lower, is more effective for As(V) than for As(III). At the pH of adsorption the As(III) the predominant species is not charged (H₃AsO₃), but the As(V) occurs as HAsO₄² and can be electrostatically attracted to the positive surface of the barite.

[1] Griffin *et al.* (1986) Hazardous and Industrial Solid Waste Testing and Disposal 60, 390-408.