Quartz solubility and \(\text{CO}_3^{2-} - \text{HCO}_3^-\) equilibrium in \(\text{H}_2\text{O} + \text{Na}_2\text{CO}_3\) and \(\text{H}_2\text{O} + \text{NaHCO}_3\) fluids at high \(P\) and \(T\)

C. Schmidt

1Deutsches GeoForschungszentrum (GFZ), 14473 Potsdam, Germany (Christian.Schmidt@gfz.potsdam.de)

Alkali hydrogen carbonate and carbonate in aqueous fluids may play an important role in the mobilization of theREE and other elements at crustal conditions [1] and in subduction zones [2]. Here, the \(\text{CO}_3^{2-} - \text{HCO}_3^-\) equilibrium and the quartz solubility in aqueous 4.65 molal \(\text{NaHCO}_3\) and 1.6 molal \(\text{Na}_2\text{CO}_3\) solutions were studied to 600 \(^\circ\text{C}\) and 1.53 GPa using a hydrothermal diamond-anvil cell. The recorded spectra were independent of pressure \((P)\) and temperature \((T)\) in \(\text{Na}_2\text{CO}_3\) solution, the fraction of the species \(\text{CO}_3^{2-}\) was ~0.99 at 100 \(^\circ\text{C}\) and ~0.91 at 200 to 600 \(^\circ\text{C}\), e.g. at 600 \(^\circ\text{C}\) from 0.16 at 0.63 GPa to 0.1 at 1.5 GPa. Thus, \(\text{HCO}_3^-\) ions can be stable in lower crustal and upper mantle fluids. The only detectable Raman band from dissolved silica was at ~770 cm\(^{-1}\), which indicates a predominantly monomeric silica speciation. The calibrated integrated intensity of this band was used to determine the SiO\(_2\)(aq) molality. The quartz solubility in 1.6 molal \(\text{Na}_2\text{CO}_3\) increased with \(P\) and \(T\), but was always much higher than the solubility of quartz in water at the same \(P-T\) condition. The quartz solubility in 4.65 molal \(\text{NaHCO}_3\) increased with \(T\), decreased with \(P\) along the 500 and 600 \(^\circ\text{C}\) isotherms to values below the solubility in water, and was approximately constant at 300 and 400 \(^\circ\text{C}\). For lower pressure isobars, there was a distinct drop in the solubility between 500 and 400 \(^\circ\text{C}\).

Molecular-level comparison of watersoluble sedimentary organic matter extracted by two methods

Frauke Schmidt1*, Boris P. Koch2, Matthias Witt3 and Kai-Uwe Hinrichs1

1MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Straße, D-28359 Bremen, Germany (*correspondence: frauke.schmidt@uni-bremen.de)
2Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
3Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany

Organic matter in marine sediments is a complex mixture of numerous individual molecules, which are central reactants in various biogeochemical processes and serve as a substrate for benthic organisms. The fate of organic matter and its bioavailability is largely controlled by composition, size and reactivity of the individual organic molecules. In this study, we aim at a molecular characterization of the easily mobilized and thus accessible fraction of organic matter in marine sediments. We compared the molecular composition of (i) the mobile dissolved organic matter (DOM) pool in interstitial waters, extracted with rhizons, with (ii) the organic matter that was extracted from the associated sediment with water in a Soxhlet apparatus. After solid phase extraction, both DOM fractions were subjected to molecular-level analysis by ultra-high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). We selected four different sediment horizons of a core from the Black Sea that represented different ages, depositional and geochemical conditions. FT-ICR mass spectra of the Soxhlet extracted DOM yielded 2- to 3-times higher numbers of molecules compared to the interstitial water DOM, with the former being distributed over a larger mass range and exhibiting higher abundances of heteroatom-bearing molecules. We related the molecular-level differences between both DOM pools to age and sediment geochemistry. The Soxhlet-extractable DOM pool was up to 30-times more concentrated than the DOM pool in the interstitial waters. Soxhlet extraction of sediments in combination with FT-ICR-MS analyses opens a window to studying a so far uncharacterized sedimentary organic matter pool that is potentially the major precursor of "traditional" DOM.