FTIR imaging of carbon dioxide diffusion in cordierite-like structures

F. RADICA1*, F. BELLATRECCIA1, G. DELLA VENTURA1, C. FREDÄ2, G. CINQUE3 AND M. CESTELLI GUIDI4

1Università degli Studi Roma Tre, 00146 Rome, Italy
(*correspondence: fradica@uniroma3.it, bellatre@uniroma3.it, dellaven@uniroma3.it)
2INGV, 00143 Roma, Italy
3INFN-LNF, 00044 Frascati (Rome), Italy
4Diamond Light Source, OX11 0DE Didcot, UK

Cordierites and beryls are isostructural minerals that may diffuse significant amounts of H2O and CO2 through their structural channels, running along the c-axis, [1]. Experimental introduction of CO2 in cordierite-like structure was studied by several authors [2, 3], who pointed out the extreme difficulty to reach sample saturation and homogenization.

In this work we treated cordierite and beryl volatiles-free single-crystals in CO2-saturated environment at different PTt conditions. The run products were analyzed via micro-FTIR spectroscopy in order to quantify the CO2 content and its distribution across the sample.

Preliminary results show that pressure plays a major role in diffusing gaseous CO2 across both cordierite and beryl, whereas the effect of temperature is less pronounced. Detailed FPA (focal-plane-array of detectors) imaging shows that the diffusion occurs along the structural channels starting from the basal pinacoids along the c-axis direction. As expected, no diffusion occurs perpendicularly to the c-axis. The diffusion path of CO2 does not exceeds 200 µm even after 10 days. Sample cracks formed during the experimental runs speed up diffusion; measured CO2 contents along these cracks are even 4 times higher than in the rest of the sample.

Glacial-interglacial changes in ocean carbonate chemistry constrained by boron isotopes, trace elements, and modelling

JAMES W.B. RAE1, JESS F. ADKINS1, ALAN FOREMAN2, CHRISTOPHER CHARLES2, ANDY RIDGWELL3, GAVIN L. FOSTER4, DANIELA N. SCHMIDT3 AND TIM ELLIOTT3

1Geological and Planetary Sciences, Caltech, Pasadena, USA
2SCRIPPS Institution of Oceanography, UCSD, La Jolla, USA
3University of Bristol, Bristol, UK
4School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, UK

Deep ocean carbon storage and release is commonly invoked to explain glacial-interglacial CO2 cycles, but records of the carbonate chemistry of the glacial ocean have, until recently, been scarce. Here we present new boron isotope (δ11B) data from detailed depth profiles and time series, that record the pH of the deep ocean at the last glacial maximum (LGM), and how it evolved over the deglaciation. We examine these data using a recently developed tracer fields modelling approach [1]. This has previously been applied to δ18O data to investigate changes in circulation at the LGM. Here we extend this method to the non-conservative tracers δ11B and δ13C, allowing us to constrain the roles of circulation, the biological pump of organic carbon and CaCO3, and carbonate compensation, in setting deep ocean carbon storage at the LGM. Finally, we show how deep ocean carbon storage evolved over the deglaciation, with pulses of stratification breakdown in the Southern Ocean and North Pacific causing CO2 release from the deep ocean to the atmosphere.