Reduction of aqueous UVI by FeII: Effect of TiIV on the speciation of UIV

DREW E. LATTA1, CAROLYN I. PEARCE2, KEVIN M. ROSSO3, EDWARD J. O'LOUGHLIN1, KENNETH M. KEMNER2 and MAXIM I. BOYANOVI1

1 Biosciences Division, Argonne National Laboratory, Lemont, IL 60439 USA
2 Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA

The solubility and mobility of uranium, a radionuclide contaminant at many sites, is highly dependent on its valence state and speciation. Transformation of aqueous U(VI) to U(IV) under the (bio-)reducing conditions found in many subsurface environments can decrease U solubility due to the precipitation of U(IV) dioxide (uraninite), a process that has been studied extensively for uranium remediation. However, recent evidence suggests that U(VI) reduction can produce complexed U(IV) species in the solid phase, such as U(IV)-phosphate precipitates or surface-adsorbed U(IV) atoms. The molecular speciation and the stability of non-uraninite U(IV) phases is poorly understood, even though this knowledge is essential in predicting uranium behavior at contaminated sites or in the design of nuclear waste repositories.

As part of understanding uranium transformations under iron reducing conditions, we examined the reduction of U(VI) by Fe(II) in the presence of Ti(IV). Ti(IV) is commonly present in natural magnetite and has been observed in the reaction of Fe(II) in the presence of Ti(IV). The formation of uraninite (dioxo-bridged UO\textsubscript{2}) in contrast, reactions with Ti-doped magnetite resulted in a phase that lacked dioxo bridges between the U(IV) atoms. In contrast, reactions with Ti-doped magnetite resulted in a phase that lacked dioxo bridges between the U(IV) atoms. The latter phase was distinct from the U(IV) mineral brannerite (UTiO\textsubscript{4}), suggesting that U(IV) was stabilized as a mononuclear surface complex. To understand the nature of Ti-complexed U(IV) species, U(VI) was co-precipitated with Fe(II) in the presence of carboxyl-functionalized microbeads and increasing amounts of Ti(IV). Analysis of the resulting solids indicated complete reduction of U(VI) to U(IV) and the formation of an inner-sphere U(IV)-Ti complex at Ti:U ratios as low as 1:1. The refined U(IV)-Ti distance of 3.43 Å suggests the formation of a bidentate corner-sharing complex between Ti octahedra and U(IV).

Active Carbon Cycling in Deep Subsurface Fracture Environments: Insights from RNA, Lipid and Isotopic Analyses

M. LAU1*, M. LINDSAY1, T.L. KIEFF2, M. PULLIN2, S. HENDRICKSON2, D.N. SIMKUS3, G.F. SLATER3, B. SHERWOOD LOLLAR4, L. LI5, G. LACRAMPE-COULOUME6, ESTA VAN HEERDEN7, M. ERASMUS8, G. BORGONIE5, B. LINAGE5, O. KULOYO5, B. MAILOUX6, V. HEUER7, K-U HINRICH7, S. MAPHANGA8 and T.C. ONSTOTT1

1 Dept. of Geosciences, Princeton University, Princeton, NJ USA 08544, 2 New Mexico Tech, Socorro, NM USA 87801
3 SGG, McMaster University, Hamilton ON Canada L8S 4K1
4 Dept. of Earth Sciences, University of Toronto, ON, Canada M5S 3B1
5 University of the Free State, Bloemfontein 9300, South Africa
6 Dept. of Environ. Sci., Barnard College, New York, NY USA 10025-6598
7 MARUM Center for Marine Environmental Sciences, Univ. of Bremen, D-28334 Bremen, Germany
8 Beatrix Au Mine, South Africa

This study undertook identifying 1) the metabolically active microbial communities of deep fracture water by comparison of cDNA (from RNA = active community) and DNA (total community) sequences; and 2) the C source of the active microbial community by comparing the compound specific δ13C and δ14C of the PLFA and the δ14C of the DNA with the δ13C and δ14C of the CH\textsubscript{4}, DIC, DOC and the δ13C of the organic acids. In this talk we will present this data for a borehole located at 1.3 kmbls. in the Beatrix Au Mine.

Comparison of the cDNA and DNA results for both Archaea and Bacteria indicates that the composition of the active community differs from that of the total DNA community. \textit{Methanobacterium} is part of the active community, though in low abundance compared to the \textit{Bacteria}. \textit{D. audaxviator} found in both DNA and cDNA nifH results indicating that \textit{N\textsubscript{2}} is occurring \textit{in situ}. cDNA library also yielded pmooA gene indicating that active methanotrophy is also occurring.

The δ13C and δ2H of the CH\textsubscript{4} is consistent with methanogenesis. The δ14C of the PLFA agrees with the δ14C of the DNA and along with the δ13C of the PLFA and the δ14C of the CH\textsubscript{4} indicate that the active microbial community is obtaining most of its carbon from the CH\textsubscript{4}.

www.minersoc.org
DOI:10.1180/minmag.2013.077.5.12