Quantification of methanogenic potential in environemtnal samples

MASANORI KANEKO^{*1}, YOSHINORI TAKANO¹, TAKESHI WATANABE², SUSUMU ASAKAWA², SEIGO SHIMA³, NANAKO OGAWA¹ AND NAOHIKO OHKOUCHI¹

¹JAMSTEC, Yokosuka, 237-0061 Japan (*correspondence: m_kaneko@jamstec.go.jp) ²Nagoya Univ. Nagoya, 464-8601 Japan ³Max Planck Inst. Marburg, D35043, Germany

A Ni porphinoid, coenzyme F430 is the prosthetic group of methyl-coenzyme M reductase, which catalyse a final step of methanogenic reactions in all methanogenic pathways including CO_2 resuction, acetate fermentation and methylotrophic pathyways[1]. F430 is unstable, hence native F430 will not be persisting in sediments through a geologic time scale. Given its unique structure, functionality and lability, F430 can be a robust biomarker for a quantitative estimation of *in situ* activities of living methanogens.

Conventionally F430 was analyzed photometrically using HPLC or off-line MS [2]. Recently we have developed a high sensitive detection of F430 by a HPLC-MS/MS. This sensitivity (femto mol level) is 10^4 to 10^5 times higher than the conventional photometric dection and only 10^2 to 10^4 methanogen cells are required for quantification of F430 in environmental samples. Our analyses indicated that concentration in paddy field ranges between 9870 and 253 fmol/g which is 1-2 orders of magnitude higher than those in marne sediments off Japan, ranging between 100 and 7 fmol/g, and 1910 fmol/g from Peru Margin (68 mbsf).

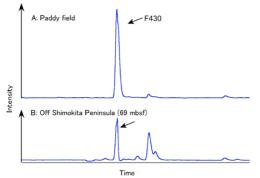


Fig. 1. HPLC-MS/MS chromatograms of derivatized F430 from a paddy field and marine sediment.

[1] Thauer (1998), *Microbiology* **144**, 2377-2406. [2] Takano, Kaneko, Kahnt, Imachi, Shima & Ohkouchi (2013), *Org. Geochem.*, in press.

Biomineralization of Strontianite (SrCO₃) by *Proteus mirabilis*

SERKU KANG¹, YUMI KIM², AND YUL ROH^{3*}

 ¹Chonnam National University, Gwangju, Korea, (chodang02@naver.com)
²Chonnam National University, Gwangju, Korea, (yumddalki@hotmail.com)
³Chonnam National University, Gwangju, Korea, (*correspondence: rohy@jnu.ac.kr)

Microbially induced mineralization of carbonate minerals has drawn much attention in recent decades because of its practical applications such as atmospheric CO_2 fixation through mineral carbonation and solid phase capture of toxic radionuclide or metal contaminants (i.e., 90 Sr, 60 Co and Cd). The objectives of this study were to investigate the potential for microbially induced precipitation of strontianite (SrCO₃) using microorganisms enriched from rhodoliths and to identify mineralogical characteristics of the bio-precipitates.

Carbonate forming microorganism (CFM) was enriched from rhodoliths and aerobically cultured at 25°C in D-1 medium containing 30 mM Sr-acetate. The microorganisms were analyzed by 16S rRNA gene DGGE analysis to confirm microbial diversity. Mineralogical characteristics of the bioprecipitates were determined by XRD, TEM/SEM-EDS analyses.

A 16S rRNA sequence analysis showed the CFM was mainly *Proteus micrailis* [1]. The growth of CFMs gradually increased for 16 days ($OD_{600} = 2.613$) and then decreased until 22 days ($OD_{600} = 2.016$) of incubation. Medium pH in the biotic group increased from acidic at first (pH = 5.3) to alkaline condition (pH = 8.6). The pH changes might induce favorable geochemical condition for Sr-carbonate precipitation. In the abiotic group, neither growth of microorganism nor changes in pH were detected.

The enriched microorganisms mediated the precipitates in D-1 medium containing 30 mM Sr-acetate. The bioprecipitates were identified strontianite (SrCO₃) by XRD analysis. SEM-EDS analyses showed that the precipitates were round in shape, and around 60 μ m in size, and composed of C, O and Sr. TEM-EDS analyses showed that the Srcarbonate minerals were irregular in shape, 60~70 nm in size, and composed of C, O, and Sr.

These results indicate that the CFM induce the precipitation of strontianite (SrCO₃) by biological processes. Therefore, CFM such as *Proteus micrailis* may play one of important roles in Sr immobilization in Sr-contaminated water and CO₂ fixation in natural environments.

[1] Chimetto et al. (2011) Int. J. Syst. Evol. Microbiol. **60(1)**, 60-64.