Solubility of CO₂ in rhyolitic melts as a function of depth, temperature, and oxygen fugacity – implications for carbon flux in subduction zones

MEGAN DUNCAN^{1,*} AND RAJDEEP DASGUPTA¹

¹Dept. of Earth Science, Rice University, Houston, TX, USA, (*correspondence: Megan.S.Duncan@rice.edu)

Partial melt of subducting sediments is thought to be a critical agent in transport of trace elements and water to arc basalt source regions. Sediment melts may also carry CO₂ to arc basalt source regions, however, the carrying capacity of CO₂ in rhyolitic melts of appropriate composition and at conditions relevant for subducting slab is unknown. In particular, the solubility of CO₂ in rhyolitic sediment melt may vary significantly as a function of fO_2 , i.e. from graphitesaturated or organic carbon-bearing domains carbonate/CO2-saturated conditions. Yet no studies have constrained the sediment partial melt CO₂ carrying capacity under graphite saturated conditions.

We conducted experiments over 1.5 to 3.0 GPa and 1300°C on a model, natural rhylitic melt under nominally anhydrous to hydrous conditions. CO2 content of experimental glasses in equilibrium with CO2-rich vapor phase was determined using FTIR spectroscopy. CO2 was found to be dissolved both as molecular CO_2 ($\text{CO}_2^{\text{mol-melt}}$) and as carbonates (CO3^{2-melt}). Speciation-specific CO2 solubility data were used to constrain the pressure-dependence of equilibrium constants of the following two dissolution reactions [1] -

 $\begin{array}{l} \text{CO}_{2}^{\text{fluid}} + \text{O}^{2-} = \text{CO}_{3}^{2\text{-melt}} - \text{K}_{\text{II}} = \text{X}_{\text{CO32}}/\text{X}_{\text{O2}} \times \text{fCO}_{2} \\ \text{CO}_{2}^{\text{fluid}} = \text{CO}_{2}^{\text{mol-melt}} - \text{K}_{\text{III}} = \text{X}_{\text{CO2}}/\text{fCO}_{2} \end{array}$

Further, using the thermodynamic framework given by [2], here we calculated the CO_2 content of silicate melt as a function of P, T, and fO_2 for graphite-saturated conditions, by combining the P-dependence of K_{II} and K_{III} constrained in [1] and P-T- fO_2 dependence of K_I of the reaction: C + O₂ = CO₂^{fluid} given by [2]. Experiments at lower temperatures are underway to constrain the T-dependence of K_{II} and K_{III}.

Using the model above, we have calculated the total CO_2 content $(CO_2^{\text{mol-melt}} + CO_3^{2\text{-melt}})$ of a sediment partial melt for a variety of subduction P-T paths [3] at fO₂ values at or below the graphite-CO₂ equilibrium. Our study suggests that ≥ 1 wt.% CO₂ may be dissolved in sediment partial melt at graphite saturation even at fO₂~FMQ-3.

[1] Duncan and Dasgupta. (in review) GCA; [2] Holloway et al.. (1992) EJM, 4, 105-114; [3] Syracuse et al.. (2010) PEPI, 183, 73-90.

The Caribbean plateau and OAE2: resolution of timing and trace metal release

R.A. DUNCAN^{1,2}*, L.J. SNOW¹ AND G. SCOPELLITI³

¹CEOAS, Oregon State University, Corvallis, OR 97331 USA (*corresp: rduncan@coas.oregonstate.edu) and ²Geology&Geophysics, King Saud University, Ruyadh, KSA ³CFTA, University of Palermo, Palermo, 90123 Italy

Initial volcanism that formed a large part of the Caribbean ocean plateau coincided with ocean anoxic event 2 (OAE2), which occurred close to the Cenomanian/Turonian (C/T) boundary (~94 Ma). Increased trace metal delivery to the surface ocean during volcanic activity associated with this ocean plateau has been suggested as the cause for the depletion of seawater oxygen concentration and deposition of organic rich sediments [1]. This link is supported by isotopic excursions (Sr, Nd, Pb, Os) across the OAE2 that indicate a volcanic source. An interval of trace metal anomalies occurs in pelagic carbonate and black shale sequences of the Rock Creek Canyon section, Pueblo, Colorado at the onset of the δ^{13} C global positive event [2]. The presence of these metal anomalies and isotopic profiles indicates a relationship between ocean plateau formation and ocean anoxia.

To further explore a direct connection between this ocean plateau and OAE2, we determined the distribution of major, minor and trace element abundances in marine sediments from an additional 7 globally distributed sites (Bass River, New Jersey; central Kerguelen Plateau; Baranca el Cañon, Mexico; Totumo, Venezuela; and Bottaccione, Calabianca and Novara di Sicilia, Sicily). After normalizing element concentrations to Zr, an interval of metal anomalies is present in all 8 sites. The changes in the trace metal patterns and concentrations among these sites is consistent with modeled late-Cretaceous surface circulation and a source of metals being the Caribbean plateau.

[1] Sinton&Duncan (1997) Econ. Geol., 92, 836-842. [2] Snow et al.. (2005) Paleoceanog., 20, PA3005.