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Although the trace metal molybdenum (Mo) is not very 
abundant, its occurrence is manifold. Molybdenum cofactors play 
key roles for many enzymes [1, 2, 3] during nitrogen fixation [4], 
nitrogen reduction, and other processes [5]. Enzymes use trace 
metals to catalyze chemical reactions by taking advantage of 
different oxidation states. Molybdenum is available to organisms as 
molybdate (MoO2-) and varies in oxidation states between +IV, +V 
and +VI, hence mobilizing two electrons [1]. We have investigated 
Mo concentrations and the Mo isotopic composition (δ98/95Mo) of 
cell fractions of the bacterial strain Escherichia coli MC4100. 
Differential centrifugation was used to separate cytosol, cell 
membrane and LSP (“low speed pellet”). The cytosol, the 
intracellular fluid, had the lowest Mo concentrations, and the cell 
membrane itself the highest Mo concentration. First Mo isotope 
abundance results suggest that the incorporation of Mo into the cell 
is associated with isotopic fractionation during production of 
membrane-anchored Mo-containing proteins and the water-soluble 
Mo-containing proteins found in the periplasm. 
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Garnet-Majorite transformation
Garnet is an important constituent of the upper mantle, as is 

evidenced by its frequent occurrence in mantle xenoliths and as 
inclusions in diamonds.  With increasing pressure silica is 
incorporated into the octahedral site of garnet resulting in a majorite 
component [1]. The transformation of garnet to majorite is reported 
to depend on a number of factors besides pressure, such as bulk 
compositions and presence of other Al bearing phases (such as cpx) 
or melt [2]. Furthermore, the presence of the minor element 
chromium has been suggested to decrease the majorite stability with 
increasing pressure [3]. 

If true, the effect of chromium on majorite transformation has 
implications for the interpretation of the formation depth of diamond 
inclusions as the Cr/(Cr+Al) ratio is much higher in depleted 
lithospheric mantle compared to fertile mantle [4]. 
Experimental methods

To investigate this further, we performed sub-solidus high-
pressure high-temperature experiments in a Walker-type multi anvil 
press (Bristol design) at pressures of 6, 9 and 12 GPa, and a range of 
temperatures. The starting materials consist of silicate glasses in the 
system Cr2O3-CaO-MgO-Al2O3-SiO2, with varying 
Cr2O3/(Al2O3+Cr2O3). Electron microprobe is used to determine the 
concentration of major and minor elements in the different phases.
Results

All experiments yielded garnet, opx, olivine and (minor) cpx as 
stable phases. Preliminary results indicate that for constant pressures 
and temperatures, the majorite component in garnet decreases with 
increasing Cr/(Cr+Al) of the bulk composition. There also appears to 
be a small temperature effect on the stability of the majorite 
component in garnet but more experiments are needed to confirm 
this.
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