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Attenuated total reflection infrared spectroscopy (ATR-FTIR) 
was used to investigate the structure of water at the surface of 
suspensions of the nontronites, NAu-1 and NAu-2.  Raw ATR spectra 
were converted to absorption index (k) spectra via the Kramers-
Kronig transform to allow direct comparison of samples with 
different indices of refraction.  Difference spectra produced from 
these k spectra allowed subtle shifts in the O-H stretching region to 
be discerned, thereby providing information about differences in the 
degree of hydrogen bonding.  Suspensions of both NAu-1 and NAu-2 
exchanged with either Na+ or K+ exhibit increased hydrogen-
bonding   at the mineral/water interface as compared to bulk water.  
NAu-1, which has greater total and tetrahedral charge than NAu-2, 
shows no change in water structure upon reduction of structural Fe or 
the addition of a small excess of electrolyte.  These observations 
suggest that the ordering of interfacial water in NAu-1 suspensions is 
dominated by the highly charged mineral surface.  Reduction of 
structural Fe in NAu-2 results in changes to the interfacial water 
structure that are dependent on the exchange cation species.  In this 
case, reduction produces a significant increase in tetrahedral charge, 
which alters the interactions of the exchange cations with the surface. 
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Multiple geo/thermochronometry datasets (zircon (U-Th)/He1, 
phlogopite 40Ar/39Ar and wadeite 40Ar/39Ar) have been acquired from 
four Western Australian kimberlite and lamproite localities 
distributed over 850 km.  The linear orientation of the eruption 
centres (~015°), southwardly younging emplacement ages, and 
apparent co-linearity with modern geodetic measurements has 
implications for Australian plate geodynamics (Fig. 1). 

The Fohn diatreme field consists of ~30 lamproite pipes 
discovered during oil exploration in the Timor Sea2.  Phlogopite 
recovered from lamproite cuttings in an offshore exploration well 
(Fohn-1) returned a robust plateau 40Ar/39Ar age of 29.4 ± 0.7 Ma 
(P=0.99).  A diamond pipe from the North Kimberley kimberlite 
field (Seppelt) yielded four zircon grains with thermally reset (U-
Th)/He ages averaging 25 Ma.  Diamondiferous pipes at Ellendale 
contain xenocrystic zircon grains with (U-Th)/He ages of 20.6 ± 2.8 
Ma that were thermally reset by lamproitic intrusions.  Other 
researchers3 report K-Ar ages for the Noonkanbah lamproite field of 
~19 Ma, whereas 40Ar/39Ar dating of wadeite from the Walgidee 
Hills lamproite yielded plateau ages of 17.46 ± 0.17 Ma (P=0.44).  

Figure 1: Age-distance relationships of WA lamproites (red) and 
Australian plate motion as determined by GPS (blue arrow). 
 Geodetic measurements indicate that the Australian plate is 
currently moving NNE at a rate of 60-75 mm/year relative to the 
Eurasian plate, whereas long period geospeedometry estimates range 
from 50-78 mm/year4.  The age-distance relationship between the 
Fohn and Wolgidee Hills sites in this study are consistent with a 
plate motion of 70 mm/yr during the Tertiary. 
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