Evaluation of sources of error in ¹⁸⁶Os/¹⁸⁸Os measurements via NTIMS

JOHN C LASSITER¹*, RUDRA CHATTERJEE¹, SHUANGQUAN ZHANG¹, STACI LOEWY¹

¹University of Texas, Jackson School of Geosciences <u>lassiter1@mail.utexas.edu</u> (* presenting author)

The ¹⁹⁰Pt-¹⁸⁶Os decay system may be useful for monitoring signals of core/mantle interaction in plume-derived lavas [c.f., 1]. However, the total natural variation in ¹⁸⁶Os/¹⁸⁸Os is small (~150 ppm), requiring the highest levels of accuracy and precision in ¹⁸⁶Os/¹⁸⁸Os measurements to discern natural variations that may reflect such interaction. Previous studies have examined several potential sources of systematic and non-systematic error in ¹⁸⁶Os/¹⁸⁸Os measurements deriving from uncertainties in the O-isotope composition of OsO₃⁻, potential interferences from PtO₂⁻, PtO₃⁻, and WO₃⁻, and departures from exponential mass fractionation [2]. We have undertaken a ¹⁸⁶Os/¹⁸⁸Os study of both laboratory Os standards and natural samples to better quantify the primary sources of analytical error in ¹⁸⁶Os/¹⁸⁸Os measurements and refine analytical procedures to minimize these errors.

Inter- and intra-run variations in oxygen isotope composition of measured OsO₃ peaks produce correlated errors in ¹⁸⁶Os/¹⁸⁸Os, ¹⁸⁹Os/¹⁸⁸Os, and ¹⁹⁰Os/¹⁸⁸Os ratios. Although significant O-isotope variation is observed between analyses, intra-run variation is sufficiently small that O-isotope composition determination through pre- and post-run measurement of ¹⁹²Os¹⁶O₂¹⁸O and other high-mass oxide peaks is sufficient. Uncertainties derived from oxide corrections can be further reduced by utilizing the ¹⁸⁹Os/¹⁸⁸Os ratio for mass fractionation corrections rather than ¹⁹²Os/¹⁸⁸Os, but the reduced error from oxygen isotope uncertainties is offset by increased error in the fractionation factor. However, the excellent reproducibility of ¹⁸⁹Os/¹⁸⁸Os measurements (<10ppm 2 σ) using ¹⁹²Os/¹⁸⁸Os for mass fractionation indicates that these uncertainties are not the primary sources of error in ¹⁸⁶Os/¹⁸⁸Os measurements.

For the quantities of Os and beam intensities utilized in previous $^{186}\text{Os}/^{188}\text{Os}$ studies (several 10s of ng Os, ~80-120 mV ^{186}Os with a 10¹¹ ohm resistor), the largest source of analytical error is shown to be Johnson Noise on interblock baseline measurements, which significantly exceeds error derived from counting statistics. Because ¹⁸⁶Os is a relatively minor isotope of Os (\sim 1.6%), it is affected by Johnson Noise error propagation to a much greater extent than higher abundance isotopes. Analytical precision on the smaller Os-isotope peaks can be significantly improved without increasing sample size simply by increasing the duration of baseline measurements in proportion to signal measurement time [3]. Further improvement is obtained by utilizing a 10¹² ohm resistor for measurement of ¹⁸⁴OsO₃ and ¹⁸⁶OsO₃ peaks. Finally, several ¹⁸⁶Os/¹⁸⁸Os analyses previously reported in the literature appear to be compromised by an as-yet unidentified, possibly organic interference that impacts both the 186Os/188Os and 184Os/184Os ratios. We present an improved method for monitoring potential interferences in future ¹⁸⁶Os/¹⁸⁸Os studies.

[1] Brandon, et al. (1999) Earth Planet. Sci. Lett. 174, 25-42.

Reactivity of U^{VI} with pure, oxidized, and Ti-substituted magnetites

- DREW E. LATTA^{1*}, CAROLYN I. PEARCE², CHRISTOPHER A. GORSKI,³ KEVIN M. ROSSO², EDWARD J. O'LOUGHLIN¹, KENNETH K. KEMNER¹, MICHELLE M. SCHERER⁴, MAXIM I. BOYANOV¹
- ¹Argonne National Laboratory, Argonne, IL, USA, dlatta@anl.gov (* presenting author)

²Pacific Northwest National Laboratory, Richland, WA, USA.

³Swiss Federal Institue of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland.

⁴The University of Iowa, Iowa City, IA, USA

Reduction of U^{VI} to U^{IV} through coupled biotic-abiotic processes can significantly decrease uranium mobility in subsurface environments. To understand the abiotic factors contributing to this process, we investigated the reduction of U^{VI} to U^{IV} by magnetite, a common rock forming mineral and product of microbial Fe^{III} respiration. U^{VI} reactivity with pure, stoichiometric magnetite (Fe^{II}Fe^{III}₂O₄, Fe²⁺/Fe³⁺ = 0.5) is compared to that with a series of oxidized (Fe²⁺/Fe³⁺ < 0.5) and Ti-substituted magnetites. Ti⁴⁺-for-Fe³⁺ substitution is common in natural magnetite [1, 2] and results in a solid solution (Fe_{3-x}Ti_xO₄, 0 < *x* < 1) where Ti⁴⁺ incorporation is charge balanced by proportional increases in Fe²⁺.

Using x-ray absorption spectroscopy (XANES and EXAFS) at the U L_{III} -edge we observe that the Fe^{2+}/Fe^{3+} ratio in magnetite is a major control on its ability to reduce U^{VI} . Stoichiometric and partially oxidized magnetites $(Fe^{2+}/Fe^{3+} \geq 0.38)$ reduce U^{VI} to uraninite $(U^{IV}O_2)$ nanoparticles, whereas more oxidized magnetites $(Fe^{2+}/Fe^{3+} < 0.38)$ adsorb U^{VI} as an inner-sphere complex without transferring electrons. The observed redox reactivity between magnetite and U^{VI} can be correlated with measured reduction potentials for magnetite and with published thermodynamic parameters for U^{IV}/U^{VI} redox couples [3].

Titanomagnetite nanoparticles with Ti formula contents up to x = 0.5 and Fe²⁺/Fe³⁺ ratios between 0.5 and 1.2 can also reduce U^{VI} to U^{IV}. EXAFS spectra indicate that the reduced U^{IV} atoms are *not* incorporated in uraninite. The speciation of U^{IV} appears to be controlled by Ti-content and not by the Fe²⁺/Fe³⁺ ratio, as the reduction of U^{VI} by partially oxidized x = 0.5 titanomagnetite results in the same non-uraninite U^{IV} species.

This work highlights previously unexplored thermodynamic and geochemical factors that may influence the speciation and solubility of uranium in the subsurface. The observation of non-uraninite U^{IV} species in this study, as well as in carbonate and phosphate bearing systems in previous studies [4-6] suggests the need for a better understanding of the stability of reduced U^{IV}.

- [1] Pearce, et al. Am. Mineral., 2010. 95: p. 425-439.
- [2] Baer, et al. Phys. Chem. Earth Pt. A/B/C, 2010. 35: p. 233-241.
- [3] Latta, et al. Environ. Sci. Technol., 2011. 46: p. 778-786.
- [4] Cologgi, et al. Proceedings of the National Academy of Sciences, 2011. 108: p. 15248-15252.
- [5] Veeramani, et al. Geochim. Cosmochim. Acta, 2011. 75: p. 2512-2528.
- [6] Boyanov, et al. Environ. Sci. Technol., 2011. 45: p. 8336-8344.

^[2]Luguet et al. (2008) Chem. Geol **248**, 342-362. [3] Ludwig

⁽¹⁹⁹⁷⁾ Chem. Geol. 135, 325-334.