Chlorine-rich fluid in granulite facies continental collision zone

Fumiko Higashino^{1*}, Tetsuo Kawakami¹, M. Satish-Kumar², Masahiro Ishikawa³, Kenshi Maki¹, Noriyoshi Tsuchiya⁴, Geoff Grantham⁵, and Takafumi Hirata¹

¹Department of Geology and Mineralogy, Kyoto University, Kyoto, Japan, fumitan@kueps.kyoto-u.ac.jp (* presenting author).

In the granulite facies rocks, CO_2 -rich fluid has been considered important and studies on Cl-rich fluid are not sufficiently available, because Cl-rich fluid inclusions are less observed than CO_2 -rich ones. However, Cl-bearing brines are increasingly recognized as playing an important role in high-T metamorphic rocks [1]. Using Cl concentration of minerals, it is possible to decipher the Cl-rich fluid activity and its role during metamorphism.

We have investigated the field distribution of Cl-rich Bt in the pelitic gneisses of the Sør Rondane Mountains, East Antarctica where Late Proterozoic to Cambrian granulites are widely exposed [2]. Among more than 20 samples studied, a Grt-Bt-Sil gneiss from Balchenfiella was selected as best suited sample to constrain the P-T-t condition of Cl-rich fluid activity. This gneiss contains Grt porphyroblasts (5-10 mm) that have P-rich core with oscillatory zoning in P. The Grt core includes Cl-poor Bt and Ap. This core is once resorbed and discontinuously overgrown by the P-poor rim, in which Cl-rich Bt and Ap are included. Coarse-grained (ca. 100 μm), round Zrn grains are exclusively included in the rim of the Grt porphyroblast and present in the matrix. This mode of occurrence suggests that Cl-rich Bt and Ap, and coarse Zrn were formed almost simultaneously. The P-T conditions of the Cl-rich Bt entrapment in the Grt rim were estimated to be ca. 800 °C and 8 kbar, and those of the peak metamorphic condition were ca. 850 °C and 11 kbar, using Grt-Bt geothermometer and GASP geobarometer [3]. The f_{HCl}/f_{H2O} ratio of the fluid in equilibrium with Cl-rich Bt [4] and Ap [5] in the Grt rim are ten times larger than that in equilibrium with Cl-poor Bt and Ap in the matrix and the Grt core. The LA-ICPMS U-Pb dating of the coarse Zrn gave ²⁰⁶Pb/²³⁸U age of ca. 600 Ma. Therefore, the Cl-rich fluid infiltration took place at near metamorphic peak condition of ca. 800 °C and 8 kbar at ca. 600 Ma.

The field distribution of Cl-rich fluid activity is somewhat linear. Some of them are located near the ductile shear zones [6], and suggesting its relation to high-strain zones [e.g. 7]. Regional distribution of near-peak metamorphic Cl-rich fluid activity in the Sør Rondane Mountains implies that it is one of the major phenomenon in the continental collision processes.

[1] Newton & Manning (2010) Geofluids 10, 58-72. [2] Shiraishi et al. (2008) Geol. London Sp. Pub. 308, 21-67. [3] Hodges & Spear (1982) Am. Min. 67, 1118-1134. [4] Selby & Nesbitt (2000) Chem. Geol. 171, 77-93. [5] Piccoli & Candela (1994) Am. J. Sci. 294, 92-135. [6] Ishikawa et al. (2011) NIPR symposium abst. [7] Kullerud et al. (2001) J. Pet. 42, 1349-1372.

Cenozoic seawater chemistry – insights from Mg isotopes in pelagic carbonate sediments and pore-fluids

JOHN A HIGGINS¹ AND DANIEL P SCHRAG²

¹Princeton University, Princeton, NJ, jahiggin@princeton.edu* ²Harvard University, Cambridge, MA

10b. Seawater chemistry changes through time

Large changes in seawater chemistry accompanied a decline in atmospheric CO₂ and cooling of Earth's climate over the Cenozoic. Sources and sinks of magnesium in seawater have distinct isotopic compositions, making the magnesium isotopic composition of seawater a tracer of the processes that control seawater chemistry [1]. Here we present Mg isotope data from both pore-fluids and pelagic carbonate sediments from ODP sites 1265 and 807A in the Atlantic and Pacific ocean basins, resepecitvely. Pore-fluid profiles of Mg and Ca in deep-sea carbonate sediments can be explained to first order by the recrystallization of biogenic carbonate and changes in Cenozoic seawater Mg and Ca. Our results are consistent with a substantial (>10 mmol) increase in seawater Mg over the Neogene, approximately balanced by a similar decline in seawater Ca. Magnesium isotope ratios measured in pelagic carbonates and corrected for re-crystallization vary systematically: peaking in the Paleogene, declining by ~0.4‰ to the Oligocene-Miocene boundary and remaining approximately constant from the Miocene to the present. Using a numerical model of global geochemical cycles (C, Mg, Ca, alkalinity), we explore mechanisms for changing seawater Mg and Ca and discuss implications for carbon cycling during the Neogene.

10b. Seawater chemistry changes through time

[1] Higgins (2010) Geochimica et Cosmochimica Acta 74, 5039-5053.

²Shizuoka University, Shizuoka, Japan

³Yokohama National University, Yokohama, Japan

⁴Tohoku University, Sendai, Japan

⁵Council for Geoscience, Pretoria, South Africa