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Cold-water corals are thought to be especially vulnerable 

to CO2-driven climate change and ocean acidification because 
they live close to the aragonite saturation horizon, which is 
now rapidly shoaling as anthropogenic CO2 penetrates into the 
deep oceans. Due to the sensitivity of calcification to 
saturation state, this may not only lead to decreased 
calcification rates but also dissolution of deep-sea calcifiers.  

Here we report boron isotopic measurements of cold-water 
corals representing a wide range of deep-sea and shallow-
water environments. These zooxanthellate aragonite corals are 
all found to have relatively high "11B compositions, lying 
significantly above the seawater borate equilibrium curve. The 
internal pH of the solitary coral Desmophyllum dianthus, 
determined from the measured "11Bcarb compositions, defines a 
highly correlated linear array with seawater pH. This 
relationship, indicative of internal (extracellular) up-regulation 
of pH at the site of calcification [1], corresponds to a 
differential pH (#pH) of ~0.7 to 0.8 units above ambient 
seawater. As a consequence the aragonite saturation state of 
the calcifying fluid is increased approximately two to five-
fold, facilitating calcification in low pH environments. This 
contrasts with the hyper-calcifying tropical zooxanthanlate 
corals that operate within a significantly lower range of #pH 
values from 0.3 to 0.4 units [1], indicating the importance of 
temperature on the kinetics of inorganic calcification. These 
new observations suggest that the effect of declining carbonate 
saturation state in the deep-oceans may be partially offset by 
the combined effects of biological up-regulation of internal pH 
and enhanced rates of calcification from higher ocean 
temperatures. 
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The structure of the lowermost mantle (D”) is dominated 
by spherical harmonics degree-2 variation with two anti-podal 
Large Low Shear-Velocity Provinces (LLSVPs) [1]. Their 
locally steep margins may be favourable sites for the 
generation of mantle plumes, giving rise to large igneous 
provinces, and even kimberlites, with ages covering the last 
540 Ma [2-4]. The LLSVPs are probably thermochemical piles 
with sufficient density to resist thermal buoyancy and 
destruction. Steep margins could be promoted by elevated 
bulk modulus of the pile material [2]. 

The piles may be enriched in meta-basaltic material with 
high density caused by high Fe/Mg ratio in perovskite and 
high bulk modulus associated with the presence of stiff silica 
minerals and absence of soft ferropericlase [5, 6]. Peridotite or 
komatiite with elevated Fe/Mg may be alternative materials in 
the piles. The origin and age of the LLSVPs are probably 
linked to the nature of the material. Accumulation of basaltic 
rocks from subducted slabs could occur slowly in the plume 
generation zones near the LLSVP-margins over 3-4 Ga [7]. 
Emplacement of komatiitic or peridotitic material with 
elevated Fe/Mg, however, could have occurred early, either 
during the final solidification of a lowermost mantle magma 
ocean [8, 9] or by sinking of solidified material from a melt 
accumulation zone (by buoyancy) at 400 km depth [10]. 
Melting in hot Hadean or Archean plumes may have been 
widespread at 20-25 GPa where the peridotite solidus  
is at relatively low T [11, 12]. The psedo-invariant melt 
compositions at p > 15 GPa are poorly constrained and may be 
relatively silica-rich at 23-30 GPa, where ferropericlase is the 
liquidus phase [11-13]. A systematic melting study of a range 
of simplified compositions will provide further insights. 
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