The strontium stable isotope composition of seawater during glacial intervals

E. STEVENSON¹, K.W. BURTON¹, F. MOKADEM¹, I.J. PARKINSON², P. ANAND² AND E. HATHORNE³
¹Present Address: Department of Earth Sciences, Oxford University, Parks Road, Oxford, OX1 3PR, UK
²Department of Earth and Environmental Sciences, The Open University, Milton Keynes, MK7 6AA, UK
³IFM-GEOMAR, Leibniz Institute of Marine Sciences, University of Kiel, D-24148, Kiel, Germany

The strontium (88Sr/86Sr) stable isotope composition of seawater reflects input from continental weathering and hydrothermal exchange at mid-ocean ridges, and output in carbonate sediments. It has been suggested that increased weathering of shelf carbonates accompanying the low sea levels during the last glacial maximum (LGM) will have enhanced the flux of light Sr (from carbonates) to the oceans. However, temperature and species dependent fractionation of Sr stable isotopes during incorporation into marine carbonate has to be quantified in order to accurately reconstruct past seawater compositions.

This study presents high-precision (88Sr data, obtained using double-spike TIMs technique. Present-day seawater yields a 88Sr composition of 0.356±0.007 (2σ) with no resolvable difference between Pacific, Atlantic and Indian Oceans. *Globigerinoides sacculifer* from sites in the South Atlantic, covering a temperature range of ~10 °C, show no systematic variation with temperature. *G. sacculifer* and *G. menardii* show systematic variations with growth rate (shell size) with heavier compositions in the larger size fractions. By contrast, *G. aequilateralis* and *G. ruber* show with no systematic variation with shell size. Preliminary 88Sr data for *G. ruber* covering the last 70 kyr indicate that there was no resolvable change in the 88Sr composition of seawater across the LGM and deglaciation. In this case the postulated enhanced weathering of shelf carbonates during glacial intervals [1], delivering light Sr isotopes to the ocean may not have been as significant as predicted [2] or else was offset by increased production and preservation of carbonates, driving seawater to heavier 88Sr values. Alternatively the very long residence time of Sr in the oceans may simply buffer the changes in input or output such that no changes are resolved at the level of precision of this study.