Methane geochemistry’s ‘stealth’ process: Microbial oxidation

WILLIAM S. REEBURGH
Earth System Science, University of California Irvine, Irvine, CA, 92697, USA (reeburgh@uci.edu)

For the purposes of this presentation, I consider a ‘stealth’ process as one that cannot be directly measured. Microbial methane oxidation, aerobic and anaerobic, are examples. Most of the fluxes used to assemble the global methane budget are net fluxes, the difference between production and consumption, so direct measurements of production and consumption require tracer measurements. Several recent high-profile climate modeling papers have fallen into the ‘stealth process’ trap by failing to explicitly consider microbial oxidation.

This talk reviews recent developments in quantifying methane oxidation in the oxic ocean and estimates the global importance of both aerobic and anaerobic oxidation in a range of environments as controls on global change induced production. New methods are discussed and remaining challenges are enumerated.

Phase separation, degassing and anomalous methane at the Menez Gwen hydrothermal field

EOGHAN P. REEVES1, X. PRIETO1, M. HENTSCHER1, M. ROSNER2, J. SEEWALD3, K.-U. HINRICHS1 AND W. BACH1

1MARUM Center for Marine Environmental Sciences, Universität Bremen, Bremen 28359, Germany (*correspondence: reeves@uni-bremen.de)
2Fachbereich Geowissenschaften, Freie Universität Berlin, Berlin 12249, Germany
3Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA

The Menez Gwen neovolcanic dome, lying at ~800m depth, hosts one of the shallowest basalt-hosted hydrothermal systems on the Mid-Atlantic Ridge and vent fluids there have unusually high CH4/H2 ratios relative to ultramafic- and other basalt-hosted systems [1]. To further constrain the origin of this CH4, fluids were sampled in 2010 from vents on the dome’s eastern flank, and from a newly discovered vent field, Bubbylon, 5km to the south of the Menez Gwen dome.

Maximum vent temperatures (270–298°C) in the eastern Hot Sands and AzorAna areas are near the 2-phase boundary and near-seafloor subcritical phase separation (boiling) is pervasive. Endmember CH4 (0.37–3.6mmol/kg) and CO2 (11–78mmol/kg) concentrations are high, but H2 (0.06–0.57mmol/kg) is low, and only a narrow Cl range (202–368mmol/kg) is evident. Two volatile-rich diffuse fluids (91–117°C) sampled appear to have formed by subsurface mixing of near zero salinity vapor phases with entrained seawater, with apparent CH4 and CO2 end-member concentrations of ~30 and ~600mmol/kg, respectively. Such extreme volatile enrichments due to boiling are likely responsible for the ubiquitous gas bubble exsolution evident at the seafloor, releasing substantial CO2 and CH4 to the water column. Despite boiling-related variability, endmember CH4/H2 ratios (2.5–18) remain anomalously high in 2010. Trace NH4+ concentrations (<5μmol/kg) and δ13CCH4 values (-16.6‰ to -19.9‰) within the typical range of unsedimented systems preclude any subsurface sedimentary source of thermogenic CH4 [2]. Thermodynamic considerations also exclude abiotic CO2 reduction to CH4 at the conditions encountered by fluids. This suggests a deeper source of CH4, such as the volatile-rich fluid inclusions found in oceanic crust Layer 3 [3]. CH4 radiocarbon and C2+ hydrocarbon analyses are ongoing.