Li-O-Pb-Nd-Hf isotope and trace element systematics and S in residual peridotites: Evidences for ancient hydrothermal fluid-rock interactions at mid-ocean ridges

L.V. RANAWEERA, T. MORIGUTI, R. TANAKA, A. MAKISHIMA AND E. NAKAMURA

The Pheasant Memorial Laboratory (PML), Institute for Study of the Earth’s Interior, Okayama University at Misasa, Tottori-Ken, 682-0193, Japan
(*correspondence: eizonak@misasa.okayama-u.ac.jp)

Massive plagioclase lherzolite (MSPL) from the Horoman orogenic massif, Japan, which formed at ~ 1 Ga at a mid-ocean ridge (MOR), represents the most unradiogenic Pb reservoir ever found in the mantle [1]. New data for O and Li isotopes of these MSPL combined with previously published trace element, S contents, and Pb, Nd and Hf isotope data reveal evidences for ancient hydrothermal fluid-rock interaction (HFRI) at mid-ocean ridges. The trace element patterns of MSPL show element enrichment and depletion in variably melt extracted residues. They show 2-43 times lower U/Pb and 3-11 times lower Ce/Pb than those of the depleted MORB mantle or DMM indicating Pb enrichment. Several MSPLs show bulk rock S elemental abundance (146-273 ppm) higher than those of the DMM (116 ppm) and primitive mantle (250 ppm) also suggesting S enrichment. In addition, S positively correlates with Pb.

O (5.11-5.49 ‰) and 7Li (-0.83-3.96 ‰) compositions of MSPL suggest a mixing between DMM and a light Li and O isotope source. These oxygen isotope values negatively and positively correlate with age corrected Pb and Nd and Hf, respectively at ~ 1 Ga.

The correlation in O-Li isotope system indicates hydrothermal fluid and MSPL interaction. Hydrothermal fluids can react with residual peridotites at MORs giving rise to sulfide which can sequester Pb and increase S. The correlation of O with Pb, Nd and Hf indicates that HFRI of MSPLs occurring around 1 Ga. Thus, our data reveal evidences for hydrothermal fluid alteration of peridotites occurred at ancient time at MORs and account for origin of highly unradiogenic Pb reservoirs in the mantle.