On the fate of ²²⁰Rn in partially saturated media

 $\begin{array}{l} \text{Stephan Huxol}^{*1}, \text{Matthias S. Brennwald}^1, \\ \text{Eduard Hoehn}^2 \text{ and Rolf Kipfer}^{1,3} \end{array}$

 ¹Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland (*correspondence: stephan.huxol@eawag.ch)
²Buchserstr. 44, CH-8157 Dielsdorf, Switzerland

³Institute of Isotope Geology and Mineral Resources, Swiss Federal Institute of Technology Zurich (ETH)

Thoron (²²⁰Rn, half-life 55.6s) is a short lived isotope of the radioactive noble gas radon (main isotope: ²²²Rn, half-life 3.58d). While ²²²Rn is part of the ²³⁸U-decay series, ²²⁰Rn originates from the ²³²Th-decay series. As ^{220, 222}Rn are produced from alpha-decay of radium isotopes, ^{220, 222}Rn emanate from minerals containing their precursors ^{224, 226}Ra. As a result, both radon isotopes are found in soil gas and soilnear air, ²²²Rn also in ground water. Hence, it is expected to find also ²²⁰Rn in ground water. However, ²²⁰Rn could not be detected in natural aquatic environments, although ²²⁰Rn in water can be measured in laboratory experiments by a tailored improved radon- and thoron-in-water detection system.

In a field experiment, ^{220, 222}Rn concentrations in various depths were continously monitored in the unsaturated soil. During a rain event, the lower most sampling port was flooded by the rising groundwater table. In response to saturation, the ²²²Rn concentrations decreased by 40-50%, but the ²²⁰Rn concentrations become virtually zero. After the event, e.g. the return to partly unsaturated conditions, the ²²²Rn concentrations increased to former levels whereby the ²²⁰Rn concentrations only slightly rose to 20% of the pre-event concentration. We conclude from the different response of ²²⁰, ²²²Rn, that the release of ²²⁰Rn to soil air is controlled by the soil water content, i.e. the thickness of water films around the soil grains. As the diffusion length of ²²⁰Rn is about 75 times smaller than that of ²²²Rn, most of the short lived ²²⁰Rn decays within the water film, if the layer reaches a certain critical thickness. In contrast, the long lived ²²²Rn diffuses through the water film into the soil air.

We tested this hypothesis in laboratory experiments with Mn-coated sand, that emanates ²²⁰Rn. In a closed vessel, the sand was sequentially wetted while the ²²⁰Rn concentration in the surrounding air was analyzed. Preliminary results show that the release of ²²⁰Rn from sand to air is effectively controlled by the water content of the sand: at a critical water content, the measured ²²⁰Rn concentration dropped to almost zero, adding experimental support that the release of ²²⁰Rn is controlled by the available humidity in the porous media.

A new highly effective silicagel emitter for lead isotopic measurements

MAGDALENA HUYSKENS*, TSUYOSHI IIZUKA AND YURI AMELIN

Research School of Earth Sciences, Australian National University, Canberra 0200 Australia (magda.huyskens@anu.edu.au, tsuyoshi.iizuka@anu.edu.au, yuri.amelin@anu.edu.au)

In modern U-Pb-geochronology a precision as high as 0.01% can be achieved in isotopic analyses using thermal ionization mass spectrometry. One of the prerequisites for achieving this high precision was the development of a highly effective ion emitter [1], which is based on a colloidal silicagel formerly produced by the chemical company Merck. Unfortunately this silicagel is not available for purchase anymore, and another ion emitter will be needed if the emitter efficiency of colloidal silica deteriorates with time. We tested colloidal silicagels from Alpha Aesar, Nissan Chemicals and Sigma-Aldrich as possible alternatives to the established Merck emitter. The gels were tested for U and Pb blanks and the ion yield (number of ions detected divided by number of atoms loaded) depending on the SiO2 concentration and particle size using 300 pg Pb of the Pb isotopic standard SRM-981. For the most effective emitter, we also searched for the optimal mixing proportion of silicagel and H₃PO₄.

The Pb blanks of the gels from all three companies are below 0.7 pg/g and for Sigma-Aldrich ~0.15 pg/g. The U blanks from Nissan Chemicals are between 21 and 38 pg/g and for Alfa Aesar ~0.7 pg/g, rendering these silicagels unsuitable for U analysis. The gel from Sigma-Aldrich shows low U blanks below 0.1 pg/g. We found no correlation between ionisation efficiency and the particle size of SiO₂. The most effective emitter is from Sigma-Aldrich at a concentration of 0.4%. The average ion yield for this concentration is 5.8% (n=18), higher than the average ion yield of 4.1% (n=23) of the Merck gel. The accuracy and reproducibility of the isotopic ratios of both gels are comparable $({}^{207}Pb/{}^{206}Pb = 0.914740 \pm 0.000041$ for Sigma-Aldrich and ${}^{207}Pb/{}^{206}Pb = 0.914735 \pm 0.000048$ for Merck). Fractionation factors range between 1.0005 and 1.0012. The highest ion yield for Sigma-Aldrich gel was obtained using 92 μ g of H₃PO₄ and 0.004 ml of gel.

From these observations we conclude that the Sigma-Aldrich silicagel is an excellent alternative for the established Merck silicagel for Pb isotopic measurements.

[1] Gerstenberger & Haase (1997), Chem Geol 136, 309-312.

Mineralogical Magazine

www.minersoc.org