Xenon isotope evidence for UV irradiation in the Hadean and the Archean

MAGALI PUJOL1, BERNARD MARTY2 AND YVES MARROCCHI3

1ETH Zurich, Switzerland, (mpujol@crpg.cnrs-nancy.fr)
2ENSG, CRPG-CNRS, Vandoeuvre les Nancy, France, (bmarty@crpg.cnrs-nancy.fr)
3Muséum National d'Histoire Naturelle, Paris, France, (marrocchi@mnhn.fr)

Stable isotope (H and N) systematics of documented cosmochemical reservoirs indicate that volatile elements of Earth and Mars were supplied from a cosmochemical reservoir which vestiges are found in chondrites [1]. However, this possibility faces the long-standing problem of the xenon paradox: the isotopic composition of this element is neither solar nor chondritic, and is under-abundant relative to chondritic volatile elements. Any supply of water and nitrogen by a chondritic source should have resulted in the addition of chondritic Xe in abundance much higher than presently seen in the atmosphere and the mantle, and with an isotopic composition drastically different from that of air Xe. Martian atmospheric Xe is elementally and isotopically similar to air Xe, which casts doubt on the possibility to fractionate Xe by terrestrial processes. Instead we propose that the xenon paradox is the result of atmospheric processing. Xenon has the lowest ionization energy compared to other noble gases, N2 or O2. Recent experiments indeed show significant Xe isotope fractionation in xenon by 1.4 % per amu during UV irradiation and trapping in condensed matter [2]. The non radiogenic, non fissiogenic Xe isotopic composition of xenon trapped in Archean barite and quartz is intermediate between Chondritic and Atmospheric [3], suggesting that the process that fractionated atmospheric Xe lasted for long periods of geological time. Tests of this possibility will include further ionisation experiments with other volatiles, and analysis of noble gases in sedimentary rocks from different epochs.


Solid core as relic of proto core

Y.D. PUSHKAREV1* AND S.V. STARCHENKO2

1Institute of Precambrian Geology and Geochronology, St.-Petersburg, Russia
(*correspondence: ydcannon@rambler.ru)
2Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Troitsk, Moscow Region, Russia (sstarchenko@mail.ru)

We suggest that the Earth’s solid core has never been formed from liquid core crystallization, but represents the proto core relict on which accretion has begun. The minimal initial mass of the proto core is equivalent to about 0.5 that of the whole modern core and can be estimated on the basis of Earth’s iron excess in comparison with its chondrite content. According to this estimation the proto core have to be dissolved. It results in increasing the mass of the liquid core. It is possible to suggest that the proto core is heterogeneous in composition and along with some admixture of such light elements as P and S contains a material of a chondrite silicate component. Floating-up of this component in liquid core during proto core decomposition is accompanied by release of energy and causes concentration-induced coevolution providing geodynamo. If the concentration of chondrite component in modern solid core exceeds critical value ~ 8% then energy of such process is enough for the magnetic field generation. If the content of a light admixture is well below this critical value the dissolution of proto core stops and the liquid core crystallization can begin. Distribution of this admixture in liquid core during proto core decomposition is accompanied by release of energy and causes concentration-induced coevolution providing geodynamo. If the concentration of chondrite component in modern solid core exceeds critical value ~ 8% then energy of such process is enough for the magnetic field generation. If the content of a light admixture is well below this critical value the dissolution of proto core stops and the liquid core crystallization can begin. Distribution of this admixture in liquid core during proto core decomposition is accompanied by release of energy and causes concentration-induced coevolution providing geodynamo. If the concentration of chondrite component in modern solid core exceeds critical value ~ 8% then energy of such process is enough for the magnetic field generation. If the content of a light admixture is well below this critical value the dissolution of proto core stops and the liquid core crystallization can begin. Distribution of this admixture in liquid core during proto core decomposition is accompanied by release of energy and causes concentration-induced coevolution providing geodynamo. If the concentration of chondrite component in modern solid core exceeds critical value ~ 8% then energy of such process is enough for the magnetic field generation. If the content of a light admixture is well below this critical value the dissolution of proto core stops and the liquid core crystallization can begin. Distribution of this admixture in liquid core during proto core decomposition is accompanied by release of energy and causes concentration-induced coevolution providing geodynamo. If the concentration of chondrite component in modern solid core exceeds critical value ~ 8% then energy of such process is enough for the magnetic field generation. If the content of a light admixture is well below this critical value the dissolution of proto core stops and the liquid core crystallization can begin. Distribution of this admixture in liquid core during proto core decomposition is accompanied by release of energy and causes concentration-induced coevolution providing geodynamo. If the concentration of chondrite component in modern solid core exceeds critical value ~ 8% then energy of such process is enough for the magnetic field generation. If the content of a light admixture is well below this critical value the dissolution of proto core stops and the liquid core crystallization can begin. Distribution of this admixture in liquid core during proto core decomposition is accompanied by release of energy and causes concentration-induced coevolution providing geodynamo.

The study was supported by RFBR projects No 10-05-00920a and No 10-05-00330.