Characterization of reactive ferrous iron in titanomagnetite (Fe$_{3-x}$Ti$_x$O$_4$) nanoparticles for contaminant reduction

C.I. PEARCE1*, O. QAFOKU2, J. LIU1, E. ARENHOLZ2, S.M. HEALD3, A.R. FELMY1, C.M.B. HENDERSON4 AND K.M. ROSSO1

1Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
2Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3Argonne National Laboratory, Argonne, IL 60439, USA
4Daresbury Laboratory, Warrington WA4 4AD, UK

Sediments at the Hanford nuclear processing site, WA, USA contain significant amounts of reactive ferrous iron, which can occur as magnetite containing structural impurities, including a substantial proportion of titanium. Titanomagnetites (Fe$_3$Ti$_x$O$_4$) have electron equivalents available for reduction of key polyvalent metal contaminants, e.g. pertechnetate. Compositionally controlled Fe$_{3-x}$Ti$_x$O$_4$ bulk powders and nanoparticle suspensions were synthesized to provide pristine materials for development of a molecular-surface phase with a more stable core, the relative proportions of which are related to the structural disorder caused by substition of tetravalent Ti into the metal sublattice. Contaminant reduction kinetics strongly depend on the relative proportions of these different Fe (II) pools.

Microbial community diversity under extreme euxinia: Mahoney Lake, Canada

A. PEARSON1, V. KLEPAC-CERAJ2 AND C.A. HAYES1

1Department of Earth and Planetary Sciences, Harvard University (pearson@eps.harvard.edu, clarmyra@post.harvard.edu)
2Forsyth Institute of Dental Medicine (vanja@forsyth.org)

Mahoney Lake, British Columbia, Canada, is shallow (15 m), with a stable hypolimnion containing > 400 mM SO$_4^{2-}$ and >30 mM S$^2-$, far more euxinic than the Black Sea. The densest plate of phototrophic bacteria ever detected (109 cells/mL, ~10 cm thick) is found at the boundary with the oxic mixolimnion. This layer is reported to contain predominantly the Chromatiaceae (purple sulfur bacteria), Amoebobacter purpureus (98%) and Thiocapsa roseopersicina (2%) [1, 2]. To date, little information has been reported on other members of the Mahoney lake microbial ecosystem, and there is no information about the microbial community residing in the aphotic hypolimnion or in the lake sediments. Suggestions that the deep lake is not active are based on the absence of gradients in SO$_4^{2-}$ and S$^2-$ profiles and on a general abundance of fragmented, rather than intact, DNA in sediments [3]. In support of this argument, much of the sulfide appears to be supplied by sulfate reduction from within the phototrophic plate, rather than from the deeper lake [1,4].

A better understanding of Mahoney Lake could help reveal if or what types of microbes are found in extreme euxinia. Here we profiled distributions of 16S rRNA genes using PhyloChip, a high-density microarray able to detect >10,000 different prokaryotic OTUs [5]. Our results yield a semi-quantitative picture of the Mahoney Lake mixolimnion (5 m), chemocline (7 m), hypolimnion (8 m), and sediments. For comparative purposes, traditional clone libraries (150-200 clones/sample) also were sequenced. Both approaches suggest that microbial diversity is greatest in the hypolimnion and sediments. Diversity is lowest in the photosynthetic plate, rather than from the deeper lake [1,4].