Elevated concentrations of trace greenhouse gases during ancient 'greenhouse' climates

D.J. BEERLING¹*, A. FOX¹, D.S. STEVENSON² AND P.J. VALDES³

¹Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK (*correspondence: d.j.beerling@sheffield.ac.uk)

- ²School of Geosciences, University of Edinburgh, Edinburgh EH9 3JN, UK
- ³School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK

Trace greenhouse gases (GHGs) are a fundamental, fastresponding component of Earth's global climate system that is sensitive to global change. However, their concentration in the pre-Quaternary atmosphere is highly uncertain due to the lack of biological or geochemical proxies. Here, we report new 3-D Earth system modeling simulations showing that the 'greenhouse' worlds of the late Cretaceous (90 Ma) and early Eccene (55 Ma) with $4\times$ pre-industrial CO₂ are compatible with high concentrations of methane, surface ozone, and nitrous oxide. Higher concentrations of these nonCO2 GHGs exerted marked planetary heating, amplified in high latitudes by lower surface albedo feedbacks. An Eocene sensitivity analysis indicates inclusion of the positive forcing by elevated trace GHGs increases the Earth system sensitivity to a doubling of atmospheric CO₂ by 1K. These results point to the requirement for including fast-feedback processes in climate models in order to draw more appropriate comparisons with emprical estimates from palaeoclimate data.

All in motion – The dynamic exchange of CO₂ and CH₄ in gas hydrates

B. BEESKOW-STRAUCH*, J.M. SCHICKS AND J. ERZINGER

Helmholtz Centre Potsdam, 14473 Potsdam, Germany (*correspondence: betti@gfz-potsdam.de)

Methane recovery from gas hydrates (GH) coupled to subsequent sequestration of CO_2 into the same formation is often seen as an ideal solution to the demand for fossil fuel on the one hand and the reduction of antropogenic CO_2 on the other hand.

Several promising experimental results on that exchange of CO_2 for CH_4 in GH have been published in recent literature [e.g. 1, 2, 3] but the follow-up scenario – the possible CO_2 hydrate dissolution and renewed CH_4 hydrate formation from the original source, has not been investigated yet.

Here we present results of a simple set of experiments using a small scale cryo-cell mounted to a Raman spectroscope that impressively demonstrate the CO_2 -CH₄ exchange in both directions.

Although the thermodynamic stability of CO₂ hydrate exceeds that of CH₄ hydrate, the CH₄ production from GH is incomplete and abates, despite continuous CO₂ gas inflow, at approximately 50%. This is due to interference of the more ideal guest-to-cavity ratio of CH₄ in small cages of sI hydrate with the unfavourable larger dimensioned CO₂ molecule. A mixed CO₂-CH₄ hydrate forms.

If the transformed CO_2 -CH₄ hydrate is then exposed to CH₄ to convert back into the former CH₄ hydrate, an incomplete CO₂ release is observed. This is expected from a thermodynamic point of view, because of the higher stability of mixed CO₂-CH₄ hydrate compared to that of pure CH₄ hydrate. The restricted exhange occurs due to the chemical dis-equilibrium caused by the high CH₄ concentration in the surrounding environment.

To converge on a real production scenario by means of CO_2 sequestration, mixed CH_4 - C_3H_8 hydrates (2% C_3H_8) as well as impure CO_2 (containing 1%SO₂) have been tested for the exchange process and proved to behave similarly.

The competing factors of aiming for chemical equilibrium and best guest-to-cavity ratio strongly influence the CO_2 -CH₄ exchange in gas hydrates and need to be considered when exploring for an effective CH₄ production from hydrate deposits coupled to long term CO₂ storage.

[1] Ersland *et al.* (2009) *Chem. Eng. J.*, in press. [2] Ota *et al.* (2007) *AIChE* **53**(10), 2715–2721. [3] Ohgaki *et al.* (1996) *J. Chem. Eng. Jap.* **29**(3), 478–483.