Sr isotopes in Banded Iron Formation carbonates: Disequilibrium with ancient seawater

J.M. LUDOIS, ¹ A. HEIMANN, ² C.M. JOHNSON¹, B.L. BEARD, ¹ J.W. VALLEY, ¹ E.E. RODEN, ¹ M.J. SPICUZZA, ¹ AND N.J. BEUKES³

- ¹University of Wisconsin, Department of Geoscience, 1215 W. Dayton Street, Madison, WI 53706, USA
- ²East Carolina University, Department of Geological Sciences, Greenville NC 27858, USA

³University of Johannesburg, Department of Geology, Johannesburg, South Africa

Introduction

Constraining the isotopic composition of ancient seawater can give insight into past geologic and oceanic processes. Here we analyzed Rb-Sr isotopes on the same samples previously analyzed for Fe, C, and O isotope compositions by Heimann *et al.* 2010 [1] of banded iron formation (BIF) carbonates (siderite/ ankerite) from the Kuruman Iron Formation and underlying platform carbonates (calcite/dolomite) from the Gamohaan Formation, Transvall Craton, SA.

Isotopic Results and Interpretations

Isotopic analysis revealed large Fe isotope variability (δ^{56} Fe=+1 to -1‰), low δ^{13} C values (-12 to -1‰), and δ^{18} O values of ~21‰ [1]. Sr isotope analysis revealed a large range of initial ⁸⁷Sr/86Sr ratios, with calcite at or near the ⁸⁷Sr/86Sr ratio of ~2.5 Ga seawater (~0.705) [2], whereas the iron-rich carbonates have initial ⁸⁷Sr/⁸⁶Sr ratios that range from at or near seawater to very high ratios of ~0.745. Combining the initial 87 Sr/ 86 Sr with the δ^{13} C shows Fe-poor carbonates (calcite and dolomite) have both Sr and C isotopic composition close to or at sea water composition, whereas the Fe-rich carbonates (siderite and ankerite) are farther from equilibrium with seawater. Because these Fe-rich carbonates are bounded by shale layers, the radiogenic ⁸⁷Sr/⁸⁶Sr ratios likely reflect small-scale fluid interaction during authigenic mineral formation in the soft sediments during microbial iron reduction.

[1] Heimann *et al.* (2010) EPSL in press. [2] Veizer (1989) *Ann. Rev. Earth Planet. Sci.* **17**, 141–167.

Marine-terrestrial linkages associated with Early Cretaceous (Aptian-Albian) global change

 $\begin{array}{l} G.A.\ Ludvigson^{1*}, L.A.\ Gonzalez^2,\\ E.\ Gulbranson^3, E.T.\ Rasbury^4, G.\ Hunt^5,\\ R.M.\ Joeckel^6, L.\ Murphy^1\ and\ J.I.\ Kirkland^7 \end{array}$

¹Kansas Geological Survey, Univ. Kansas, Lawrence, KS 66047, USA (*correspondence: gludvigson@kgs.ku.edu)

²Geology Dept. Univ. Kansas, Lawrence, KS 66045

³Dept. Geology, Univ. California Davis, CA 95616

⁴Dept. Geosciences, Stony Brook Univ., NY 11794

⁵Dept. Geol. Sciences, New Mexico St. Univ., Las Cruces, NM 88003

⁶School of Nat. Res., Univ. of Nebraska, Lincoln, NE 68583 ⁷Utah Geol. Survey, Salt Lake City, UT84114

A calcrete succession from the Cedar Mountain Formation (CMF) of Utah is calibrated by detrital zircon U-Pb dates spanning from ~ 131 to 105 Ma, overlapping Oceanic Anoxic Events OAE1a and OAE1b. Coupled chemostratigraphic profiles of calcite & organic carbon $\delta^{13}C$ data show parallel structure, and capture records of the early Aptian Ap7 and late Aptian-early Albian Ap12-Al1 features [1] in long-ranging positive Carbon Isotope Excursions (CIEs). CIEs are expressed in profiles with background calcrete $\delta^{13}C$ values of ~-6% VPDB (δ^{13} Corg values of ~ -30%), and peak calcrete $\delta^{13}C$ values of \sim -3‰ VPDB ($\delta^{13}Corg$ values of \sim -27‰). The Ap7 peak is calibrated by a 119.4±2.6 Ma U-Pb date on calcrete. Coordinated $\delta^{13}C$ data show Aptian-Albian CIEs coincide with atmospheric pCO₂ changes following conventional methodology [2]. Moreover, the Ap7 and Ap12-All CIEs coincide with changes in calcrete δ^{18} O values, ranging from \sim -8% VPDB in background positions up to -4 to -3% at the peaks of the Ap7 & Ap12-Al1 CIEs. Diagenetic studies of selected calcretes in the CMF consistently yield Meteoric Calcite Line values with $\delta^{18}O$ of -8‰ VPDB, showing that δ^{18} O of zonal paleoprecipitation changed little over time. Some components in CIE calcretes show evidence for evaporative enrichments of early diagenetic porewater δ^{18} O values by $\geq 4\%$. Along with dramatically-reddened siliciclastic mudstone strata from the Ap7 & Ap12-Al1 intervals, diagenetic studies suggest that the CIEs were episodes of continental aridification.

[1] Herrle et al. (2004) Earth & Planet. Sci. Letters **218**, 149– 161. [2] Ekart et al. (1999) Amer. Jour. Sci. **299**, 805–827.