Self-sealing effect of CO₂-hydrate in the sediment storage concept of CO₂

XIAOCHUN LI¹ AND TAKASHI OHSUMI^{2*}

¹Chinese Academy of Sciences, Wuhan 430071, PR China (xcli@whrsm.ac.cn)

²CRIEPI, Abiko, Chiba 270-1194, Japan

(*correspondence: ohsumitk@ohsumi-jp.com)

Based on the laboratory measurements of the induction time (formation time) of CO_2 hydrate, the time period of liquid CO_2 travelling in the pore space before clogging was estimated.

The simulated pore space passage in laboratory was devised with a pair of grated silica glass plates, which gives network paths with the size of 200 micrometer in width and 20 micrometer in depth. At 5 degree C, the continuous flow regime was observed for 3 hours with the experimental breakthrough pressure of 0.4 MPa.

As an evaluation of the dynamic self-sealing capability during the upward leakage of the stored liquid CO_2 within the sediment layers, the hydraulic model analysis was made whether or not the buoyant liquid CO_2 reaches to the seabed. The calculation results showed that the clogging within an overlying sediment layers with total thickness of 171 m and with the permeability of 1 darcy, will take place before the front of the injected CO_2 reaches to the seabed.

Inside the Exclusive Economic Zone of Japan, the sea area covered with the sediment layers thicker than 1000 m, and with a water depth greater than 500 m, and with a bottom seawater temperature lower than 5 degree C is estimated to be 150, 000 km², which corresponds to the estimated sediment storage potential of 480 billion tonne of CO_2 , based on the assumption that the effective thickness of storage layers is 200 m, the effective porocity is 20 % and the effective sweep efficiency of the injected liquid CO_2 with the density of of 800 kg/m³ is 10%.

The work was conducted when the authors were engaged in Research Institute of Innovative Technology for the Earth, and was financially supported by Minstry of Economy. Trade and Industry, Japan.

S and O isotopes to identify the source of sulfate in the Jialing River, a headwater tributary of the Yangtze

X.D. LI^{1*}, C.Q. LIU¹, X.L. LIU^{1,2}, N. AN¹ AND L.R. BAO^{1,2}

¹Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, PR China (*correspondence: lixiaodong@mails.gyig.ac.cn)

²Graduate University of Chinese Academy of Sciences, Beijing, PR China

This study analyzed the chemical (Ca²⁺, Mg²⁺, Na⁺, K⁺, HCO₃⁻, Cl⁻, NO₃⁻, SO₄²⁻) and isotopic ($\delta^{34}S_{SO4}$ and $\delta^{18}O_{SO4}$) compositions of 23 samples uniformly distributed and collected along the Jialing River. The chemical composition of the river water is characterized by high concentrations of Ca²⁺ and HCO₃⁻, followed by Mg²⁺ and SO₄²⁻, which account for more than 90% of total ion concentration. Analyses of the stoichiometry of the river water show that the water chemistry is controlled by carbonate dissolution not only by carbonic but also by sulfuric acid, and indicate that sulfuric acid plays an important role in carbonate weathering. The river waters studied here are rich in sulfate ion. The co-variation of $\delta^{34}S_{SO4}$ and $\delta^{18}O_{SO4}$ is used to interpret the origin of sulfate (Figure 1).

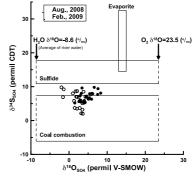


Figure 1: $\delta^{34}S_{SO4}$ versus $\delta^{18}O_{SO4}$, along with ranges for potential sources.

The sources of SO_4^{2-} are considered to be most likely the high sulfur-content coal combustion and oxidation of sulfide minerals during weathering of coal containing strata in the Jialing River catchment.

[1] Yoon et al. (2008) Aquat Geochem 14, 147–170. [2] Xu & Liu (2007) Chem Geol 239, 83–95. [3] Chen & Chu (1988) Chem Geol 72, 155–161. [4] Goldberg et al. (2005) Precambrian Res 137, 223–241. [5] Li et al. (2006) J Geochem Explor 89, 227–230.