An experimental study of the diffusion of C and O in calcite in mixed CO₂-H₂O fluid

T.C. LABOTKA¹*, D.R. COLE², M.J. FAYEK³ AND T. CHACKO⁴

- ¹Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996-1410
- ²Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110

³Department of Geological Sciences, University of Manitoba, Winnipeg MB R3T 2N2

⁴Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G 2E3

The diffusivity of C and O in calcite in mixed CO2-H2O fluid was determined over the range in x_{CO2} from 1.0 to about 0.2 primarily at 700 °C, 100 MPa, with selected experiments conducted at pressures to 250 MPa and temperatures of 600 and 800 °C. The diffusivity of C, $D_{\rm C}$, varies little with $x_{\rm CO2}$, although there is some evidence for a slight increase in $D_{\rm C}$ from ~ 5 × 10⁻¹⁸ to ~ 5 × 10⁻¹⁷ cm²/s with decreasing x_{CO2} . Despite the large uncertainty, we observed that D_0 increases from ~ 2 × 10⁻¹⁶ to ~ 5 × 10⁻¹⁴ cm²/s with x_{CO2} decreasing from 1.0 to 0. There is a good correlation at 700 °C between $\log D_0$ and log $f_{\rm H2O}$ regardless of the total pressure, matching the observations of previous workers. The data are consistent with a simple model for the diffusion of O in calcite with two components in the fluid phase, one for diffusion in the presence of CO₂ and one for the presence of H₂O: $D_0 = D_0^{CO2}$ + D_0^{H2O} a_{H2O} . The activity of H₂O is relative to the fugacity at 100 MPa, 700 °C. D_0^{CO2} is 3.45 × 10⁻¹⁶, and D_0^{H2O} is 3.8×10^{-14} cm²/s. The model implies that there is little dependence of the diffusivity on pressure over the range investigated. With this model and the values of D_0 in pure CO_2 and in pure H₂O, the value of D_0 is predicted over the temperature range 600--800 °C and $p_{\rm H20}$ up to 300 MPa, the range of the data. Calculated closure temperatures for Oisotope exchange between calcite and fluid are reduced by about 150 °C in the presence of an aqueous fluid (figure).

Particulate matter pollution: An environmental magnetism study with biological collectors in urban areas of Northern Portugal

M.J. LACERDA¹, H. SANT'OVAIA^{1*} AND C.R. GOMES²

 ¹Centro de Geologia da Universidade Porto, DGAOT, FCUP, R Campo Alegre, 4169-007 Porto, Portugal (*correspondence: hsantov@fc.up.pt)
²CGUC, DCT, Universidade de Coimbra, Portugal

This work presents an evaluation of the pollution levels in plant leaves from five selected sites, 4 in urban areas (2 zones in Porto, 1 in Valongo and 1 in Braga towns) and one in a rural area. An environmental magnetism study was used with particle biological collectors, leaves from *Nerium oleander*, *Quercus* spp., *Tilia* spp. and *Platanus* spp. The sampling was conducted in July, August, October, November and December 2009 and January 2010. A total of 34 samples was obtained. Magnetic parameters, low-field magnetic susceptibility (χ) and isothermal remanent magnetization (IRM) determinations, were used to indicate the source of the magnetic particles.

The magnetic susceptibility (χ) values are comprised between 2.54 and 17.17 E⁻⁸ m³kg⁻¹ in Porto, 3.78 and 5.70 E⁻⁸ m³kg⁻¹ in Braga, 2.85 and 8.28 E⁻⁸ m³kg⁻¹ in Valongo and, finally, between -0.66 and -0.21 E⁻⁸ m³kg⁻¹, in the rural area. The town of Porto shows the higher χ comparing to Braga and Valongo. The samples of the rural area showed always negative values of χ and very low values of IRM_{1T}. The values of IRM_{1T}, measured for the *Tilia* spp. in Porto and in the rural area have a relationship 9.92:1.00. In Porto, when comparing neighbouring trees of different species (Platanus spp, Quercus spp. and Nerium oleander) in the same area, the highest values of χ are always obtained in the *Quercus* leaves. A comparison of the values of χ for the different months shows that in the month of December, these values are, on average, higher. In November, compared with October, there was a decrease of χ , which can be explained by the rainfall which had the effect of removing particles from the leaves. In January, it seems to have had an increase of χ , although the sampling had been limited to evergreen species. The average values of S-300 was 0.96 (N=26), indicating the presence of ferrimagnetic particles magnetite-like. The values of S-25 (mean=0.27, N=26) were consistent with the presence of particles with a PM10 diameter. The results pointed out the contrast between areas with high traffic and the countryside. We come to the conclusion that Quercus leaves showed a higher efficiency to accumulate particles than the Platanus leaves.