Transformation kinetics for olivine with ~75 ppm H₂O into ringwoodite

WYATT L. DU FRANE^{1*}, THOMAS G. SHARP¹, JED L. MOSENFELDER² AND KURT LEINENWEBER¹

¹Arizona State University, Tempe, AZ 85287, USA (*correspondence: wd@asu.edu)

²California Institute of Technology, Pasadena, CA, USA

Metastable Olivine Hypothesis

The existence of metastable olivine (MO) has been debated as a possible trigger of deep focus earthquakes, but of equal importance its existence may constrain the amount of hydrogen being brought to Earth's mantle transition zone (MTZ) via subduction. The rate which olivine (ol) transforms into wadsleyite and ringwoodite (rw) is dependent on hydrogen content, and determines the likelihood that metastable olivine could persist into the MTZ. Previous results indicate that 300 ppm of H₂O is too much to allow for MO [1, 2]. How much is too much? We present rw rim growth rates for olivine containing as little as 75 ppm of H₂O.

Figure 1: Rw rim growth rates for ol containing 75+ ppm H₂O, 300 ppm D₂O [1], and nominally anhydrous.

Discussion of Results

Rw rim growth for ol containing \sim 75+ ppm of H₂O initially occurs at a rate that is nearly identical to that of olivine containing 300 ppm D₂O. In the earliest stage of growth, 75 ppm of H₂O is enough to partion into the growth rim and hydrolytically weaken it, but was not enough to sustain a linear growth rate into completion transformation. We do not see proposed power law dependence on hydrogen content of this range, or grain size (500 µm) [3].

[1] Diedrich *et al.* (2009) *Chem Geol* **262**, 87–99. [2] Kubo *et al.* (2009) *EPSL* **287**, 12–23. [3] Hosoya *et al.* (2005) *GRL* **32**, L17305.

Turnover of stable organic carbon and CO₂ evolution from soils applied with fresh organic matter

W.A. DUMALE, JR.^{1*}, T. MIYAZAKI², T. NISHIMURA² AND K. SEKI³

¹Nueva Vizcaya State University, Bayombong, 3700, Nueva Vizcaya, Philippines

(*correspondence: dumalewajr@yahoo.com)

²University of Tokyo, Tokyo, 113-8657 Japan, T. Miyazaki (amiyat@soil.en.a.u.tokyo.ac.jp), T.Nishimura (takun@soil.en.a.u-tokyo.ac.jp)

³Toyo University, Tokyo, 112-8606 Japan

As deduced from the literature, the soil organic carbon (SOC) of particle size $<53 \mu m$ is mineral-associated organic carbon (MAOC), a measurable fraction of the stable pool described in the CENTURY terrestrial model.

We studied the effect of fresh organic matters (FOM): no OM (control); chicken manure (CM): 2.12 g carbon kg⁻¹ soil; and leaf litter (LL) compost: 1.81 g carbon kg⁻¹ soil on short-term dynamics of MAOC and CO₂ evolution of two soils: Bagabag, Nueva Vizcaya, Philippines (121°15′E, 16°35′N) and Tsumagoi, Gunma Prefecture, Japan (138°30′E, 36°30′N) in a 110-day constant temperature laboratory incubation experiment.

Bagabag soil had higher cumulative CO_2 evolution and CO_2 evolution rate than Tsumagoi soil despite the former having lower initial SOC content, contrary to conventional knowledge that soils having higher initial SOC content have higher rate of SOC loss than soils with lower SOC levels. Significant MAOC decrease in 5–20-cm layer of Tsumagoi soil suggest short-term stable SOC turnover in a timescale of days. Greater MAOC decline in CM-applied Bagabag soil suggest that manure application may result to bigger stable C turnover in this soil. Our results provide evidence of short-term stable SOC turnover, and challenge the convention that only labile SOC is involved in short-term CO_2 evolution from soils applied with organic matters.

[1] Dumale (2009) Geophys. Res. Lett. **36**, LOI301: doi 10. 1029/2008GL036436.