Uranium isotopic systematics of the 300 Area (Hanford, WA) groundwater plume and U-contaminated sediments

JOHN N. CHRISTENSEN^{1*}, JAMES P. MCKINLEY², MARK E. CONRAD¹, DEBORAH STOLIKER³, P. EVAN DRESEL², DONALD J. DEPAOLO¹ AND JOHN M. ZACHARA²

 ¹Lawrence Berkeley Natl. Lab, Berkeley, CA 94720 (*correspondence: e-mail: jnchristensen@lbl.gov, msconrad@lbl.gov, DJDepaolo@lbl.gov)
²Pacific Northwest Natl. Lab, Richland, WA 99352 (james.mckinley@pnl.gov, john.zachara@pnl.gov)
³U.S. Geological Survey, Menlo Park, CA 94025 (dlstoliker@usgs.gov)

The 300 Area at the Hanford Site in Washington is situated along an ~2 km stretch of the Columbia River. Past operations in the 300 Area included the disposal of chemical and radioactive waste into a series of settling ponds and disposal trenches. This resulted in a groundwater U plume in the 300 Area, with U concentrations reaching greater than 100 ppb, that communicates with the Columbia River. The persistence of the groundwater U plume is likely due to replenishment by U released from contaminated sediments, influenced by dynamic water table elevation driven by highly variable Columbia River stage [1]. The 300 Area DOE Integrated Field Research Center (IFRC) was established to conduct field-scale experiments regarding U mobility in a hydrologically dynamic environment.

Here we discuss our U isotopic (²³⁴U/²³⁸U, ²³⁶U/²³⁸U, $^{235}\text{U}/^{238}\text{U})$ studies of 300 Area groundwater and sediments, with a particular focus on the IFRC experimental plot. These U isotopic data provide insights into the sources and temporal dynamics of the U plume. Comparison between 300 Area groundwater and sediments suggest that groundwater U isotopic variation is in large part due to local sediment U isotopic compositions, rather than simple mixing within the plume between distinct U isotopic end-member sources. A dramatic example of this is provided by a series of groundwater samples from the IFRC array collected in spring 2009. Increases in U concentration by over a factor of 5 were observed coincident with rises of the water table into the deep vadose ('smear') zone. The U isotopic fingerprint of the high U concentration samples are mappable to the U isotopic stratigraphy of the local sediments, pinpointing a particular depth range in the 'smear' zone as the U source. This confirms that the source of the added U is in the 'smear' vadose zone, and provides constraints on its spatial location and mass balance.

[1] Zachara et al. (2007) PNNL Report # 17031.

Manganese carbonates formation during long-term sorption of Mn²⁺ by viable *Shewanella putrefaciens*

N. CHUBAR^{1.}, T. BEHRENDS¹, M.C. AVRAMUT¹ AND P. VAN CAPPELLEN^{1,2}

¹Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands (*correspondence: n.chubar@geo.uu.nl) (behrends@geo.uu.nl, crisavramut@yahoo.com)

²Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, Georgia 30332-0340USA (pvc@eas.gatech.edu)

Present paper explains the mechanism of Mn^{2+} long-term sorption by viable *S. putrefaciens* (continuation of the work [1]) at the following conditions: 125 and 1000 ml batches; 5, 10, 22 and 30 °C; Mn^{2+} initial concentrations = 125, 200, 750 and 1000 mg L⁻¹; bacteria concentrations = 2 and 4 g_{dw} L⁻¹ and contact time - from 3 to 30 days. FTIR, EXAFS and SEM investigations demonstrated that longer than 4 days contact time leads to formation of Mn-containing precipitates. Their composition (as well as ratio, rate of formation) depends on the experimental conditions mentioned above. Some of our findings: manganese carbonates were detected in 1000 ml batches only at 10, 22 and 30 °C, Fig. 1.

Figure 1: FTIR spectra of *S. putrefaciens* contacted to Mn^{2+} over 30 days at different temperatures.

Formation of MnCO₃ starts in more than 6 days, Fig. 2.

Figure 2: Radial structure functions around Mn resulting from Fourier transforms of EXAFS oscillation.

[1] Chubar et al. (2008) Colloids & Surfaces B 65, 125–133.