Edge of chaos domain of Zhabotinskii CNN: Implications in hydrothermal ore-forming processes

D. Xu1,2,* C. Yu2,4 and Q. Cheng3,4

1School of Economics and Management, China University of Geosciences, Wuhan 430074, China
(*correspondence: xdy@cug.edu.cn)
2Faculty of Geosciences, China University of Geosciences, Wuhan 430074, China
3Faculty of Science and Engineering, York University, Toronto, M3J 1P3, Canada
4State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

In describing the dynamics of the complicated Belousov-Zhabotinsky reaction, Zhabotinskii proposed an axiomatic model [1]:

\[
\begin{align*}
\frac{\partial \theta}{\partial t} & = D_1 \Delta \theta \left[1 - \eta \left[2(\theta - 1)^{3}\right]\right] + B \\
\frac{\partial \eta}{\partial t} & = D_2 \Delta \eta - A \eta - \theta(\eta - 1)
\end{align*}
\]

where \(\theta \) and \(\eta \) are concentrations of the components, \(A \) and \(B \) are constant coefficients, \(D_1 \) and \(D_2 \) are diffusion coefficients.

In this paper, the model was mapped into a cellular nonlinear network (CNN) named as Zhabotinskii CNN and the local activity and edge of chaos domains were calculated according to the theory and method described in [2]. The complete procedure and detailed conclusions can be found in [3].

Given practical initial and boundary conditions, choosing the system parameters \(A \) and \(B \) in the edge of chaos domain, we simulated meaningful patterns, some of which can be found in [3]. These patterns formed in the self-organization processes could be good supports to the idea that the onset of large hydrothermal deposits are at the edge of chaos [4]. The calculated edge of chaos domain could also be valuable for large hydrothermal deposits are at the edge of chaos [4]. The processes could be good supports to the idea that the onset of ore-formation.

This work was financially supported by NSFC (Nos. 40972205, 40872195, 40525009 and 40638041).

References:

Sampling challenges in Re-Os geochronology of black shale

G. Xu1,2*, J. Hannah1,2, H. Stein1,2, A. Zimmerman3, G. Yang3, S. Georgiev1,2 and B. Bingen2

1AIRIE Program, Department of Geosciences, Colorado State University, Fort Collins, CO 80523-1482 USA
(*correspondence: Guangping.Xu@colostate.edu)
2Geological Survey of Norway, 7491 Trondheim, Norway

Re-Os geochronology for black shales is successful for documenting depositional ages and palaeoenvironmental changes. Re and Os are susceptible to post-depositional processes; thus, a sampling strategy grounded in geologic understanding is essential. Here we present Re-Os analyses of Triassic black shales from Svalbard outcrops and Svalis Dome (Barents shelf) drill core [1] to evaluate the effects of water leaching and spatial heterogeneity on Re-Os systematics.

Svalbard shales were leached 3 times, 30 min each, with MQ-H2O in an ultrasonic bath. Each leachate was collected and dried. For these well-indurated, carbonate-cemented shales, leaching removed only 0.2-0.4 wt%. The unleached shales, leached shales, and leachate, however, all have different \(^{187}\text{Re}/^{188}\text{Os} \) and \(^{187}\text{Os}/^{188}\text{Os} \). Svalis Dome shales are poorly indurated, and leaching removed a significant amount of material. Again, the leached and unleached shales have different Re-Os compositions. These tests indicate that water leaching in natural settings (e.g. groundwater flushing or subaqueous outcrops) can disturb the Re-Os system.

It has been proposed that large homogenized samples of black shale (>20g [2]) are necessary to avoid any small scale Re-Os decoupling. For indurated Svalbard shales, <1g samples yield only minor differences in isochron statistics. Re-Os analyses of <1g samples from Svalis Dome, in contrast, fall off the isochron defined by large samples (>20g). Other Re-Os studies using 5g to <0.5g samples lead to excellent isochrons (e.g. Late Permian shale from the Mid-Norwegian Shelf [3], Archean shale from the Superior Province [4]). Homogenizing large samples (~100g [5]) can unnecessarily limit \(^{187}\text{Re}/^{188}\text{Os} \) variations, producing large age uncertainties.

Our results suggest that black shales exposed to surface waters or groundwater flushing should be avoided [6]. The best sample size to secure ‘closed system’ isochrons depends on the age and induration of the black shale, and must be determined independently for each geologic environment.

Funding: NFR Petromaks 180015/S30, Statoil, Eni Norge.

References: