Biological cycling of sulphate in small mountain lakes determined from natural ³⁵S

ROBERT MICHEL¹, DON CAMPBELL², JOHN TURK³ AND ALISA MAST⁴

¹US Geological Survey, Menlo Park, CA (rlmichel@usgs.gov)
²US Geological Survey, Denver, CO (dhcampbell@usgs.gov)
³US Geological Survey, Denver, CO (jttruk@hotmail.com)
⁴US Geological Survey, Denver, CO (mamast@usgs.gov)

The biological cycling of sulphate in watersheds is an important issue and will more so with a possible switch to the use of more coal and oil shale. One approach to studying this problem is the use of naturally-occurring ³⁵S, produced by cosmic-ray spallation of argon in the atmosphere. In this study, 35S is used to investigate the cycling of sulphate in two small lakes in the Flattops Wilderness Area, Colorado. The two lakes are Ned Wilson Lake and Upper Ned Wilson Lake, with areas of about 10000 m² and 2500 m² respectively. The main source of water for these lakes is snow melt and there is no observable surface flow into or out of them in the summer. During the summer of 1995 and 1996, concentrations of snowmelt derived ³⁵S decreased much more rapidly than can be accounted for by decay alone. The drop in ³⁵S concentrations can not be explained by changes in sulphate concentrations and there was no accompanying change in sulphate stable isotope ratios. Influx of "dead" sulphate from groundwater is ruled out by other chemical data. The most likely cause for ³⁵S concentrations to decrease faster than decay is biological exchange with the biota in the lake. Sulphate containing ³⁵S is incorporated into the biota and sulphate containing nonradioactive sulphate is returned to the system, with little or no net change in sulphate concentration. This process entails no fractionation. Using the specific concentrations of ³⁵S $(^{35}S/SO_4)$ we were able to estimate biological exchange rates from 2-10 microgms/L per day with the higher rates being found in Upper Ned Wilson Lake each year.

The stability of Zr in F-bearing hydrothermal solutions

ART A. MIGDISOV AND A.E. WILLIAMS-JONES

Earth & Planet. Sci., McGill University, Quebec, Canada (artas@eps.mcgill.ca)

Although zirconium is widely believed to be one of the most immobile of elements during the interaction of rocks with crustal fluids, this view has been challenged by discoveries of hydrothermally altered zircon [1] and zircon containing fluid inclusions [2]. However, there is no reliable information on the behaviour of zirconium in crustal fluids, i.e., its speciation, and therefore no basis for evaluating these observations in the context of zircon solubility. Information on the stability of zirconium species in hydrothermal solutions is limited to a single theoretical extrapolation of low-temperature data [3] that predicts insignificant stability of fluoride complexes of zirconium at T>100°C. The goal of our study was therefore to check this prediction and to derive experimentally determined stability constants for fluoride complexes of zirconium at temperatures up to 250°C. Our experiments investigated the solubility of syntetic ZrO₂ in HFbearing solutions. The experimental method is identical to that reported by us for determining the stability of REE fluoride species [4]. Experiments involved equilibrating solid ZrO₂ with solutions containing a range of HF concentrations. After equilibrium was attained, the autoclaves were quenched, ZrO₂ was removed, and any Zr precipitated was dissolved by adding hydrofluoric acid to the experimental solutions. The concentrations of Zr and F in the solutions were analysed using NAA. The preliminary data obtained in this study are in extraordinary disagreement with the earlier theoretical study [4] and suggest that of Zr fluoride species are many orders of magnitude more stable than predicted. For example, whereas the recommended value of the logarithm of the formation constant for ZrF_2^{2+} at 200°C is 4.44 [3], the corresponding preliminary value derived in our study is 21.6. Indeed, the latter value is actually much closer to values reported for low temperatures (e.g., 16.93 at 60°C [5]). The very high preliminary information constants obtained for zirconium fluoride species in this study help explain reports of zirconium mobility in natural systems.

 Schaltegger (2007) Elements, 3, 51,79 [2] Dubinska et al.
(2004) Chem. Geol., 203, 183-203 [3] Aja et al. (1995) Appl. Geochem., 10, 603-20 [4] Migdisov and Williams-Jones
(2007) Geochim. Cosmochim. Acta, 71, 3056-69 [5] Hammer (1979) ENICO-1004.