Hydrogen isotope analyses of hydrous glasses by TC/EA system

ERWAN MARTIN, ILYA BINDEMAN, JIM PALANDRI AND DANA JOHNSTON

Geological Sciences, 1272 University of Oregon, Eugene OR 97403, USA (ermartin@uoregon.edu)

We report 75 dD analyses of 6 synthetic and 9 natural hydrous glasses with varying H₂O (0.1-5.5 wt%) and SiO₂ contents (48-74 wt.%) obtained with a TC/EA-MAT253 continuous flow system. Most samples were 1-2 mg, but up to 9 mg was used for H₂O-poor samples. The complete water extraction from samples allows 1) determination of the total water (H₂O+OH) content with a 5% (± 0.15 wt%) 2σ error; and 2) the determination of δD with an overall reproducibility of <3.5% (2 σ) and an average of 2.1 % (2 σ), based on replicates (2<N<4) of 10 samples in 5 different sessions. Experimental hydrous glasses of 5 different grain sizes, from <50µm up to single ~1 mm glass chunks, yield similar results for δD values and wt.% H₂O. Therefore, we advocate that the TC/EA system is a high throughput quantitative technique appropriate for the determination of the total water contents and D/H ratios in hydrous glass materials

Six experimental silicic glasses were generated in equilibrium with -25 % and -150 % waters. These glasses return systematically 25-30 ‰ lower δD values, reflecting D/H isotope fractionation between melt and water. We also measured D/H ratios in mafic and silicic hyaloclastites (subglacially hydrated volcanic glass with 2-5 wt% of environmental water) from Iceland. The analyses yielded the range in δD values from -135 ‰ to -105 ‰ in agreement with inferred δD values of the contemporaneous waters and the isotopic fractionation during glass hydration.

Satellite remote sensing estimate of global ground-level aerosol concentrations and precursors

RANDALL V. MARTIN^{1,2}*, AARON VAN DONKELAAR¹, CHULKYU LEE¹ AND LOK LAMSAL¹

¹Dalhousie University, Halifax, Nova Scotia, Canada (*correspondence: randall.martin@dal.ca)

²Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138, USA

We begin with an overview of satellite remote sensing of air quality, and then describe our efforts to develop a global satellite-based estimate of ground-level fine aerosol concentrations (PM2.5). Aerosol optical depth from the MODIS and MISR satellite instruments are combined for 2001-2006. A chemical transport model (GEOS-Chem), is used to estimate the relationship between aerosol optical depth and PM_{25} . We evaluate our approach and estimate with observations from the CALIPSO satellite instrument, the AERONET ground-based network, and ground-based in situ observations. The global accuracy of the ground-level PM_{2.5} estimate is within 5 μ g/m³ ± 25% globally. Annual mean concentrations exhibit stark spatial variation, with regional values of more than 50 μ g/m³ in parts of India and China. We interpret the PM_{2.5} estimates in light of observations of SO₂ and NO2 from the SCIAMACHY and OMI satellite instruments.