HSE and 187Os-186Os in mantle samples: Key tools to constrain planetary processes?

A. LUGUET1*, J.-P. LORAND2, D.G. PEARSON3 AND G.M. NOWELL3

1Steinmann Institut, Universität Bonn, Germany
2Mineralogie-Cosmochimie, CNRS-MNHN, Paris, France
3NCIET, Earth Sciences Dpt, Durham University, UK

Highly Siderophile Element (HSE: Os, Ir, Rh, Pt, Pd, Re) systematics and Os isotope signatures of mantle samples are potential key tools to constrain planetary processes such as metal-silicate differentiation, late accretionary history or core-mantle interaction [1]. The signatures provided by these tracers are assumed to be primary and free from magmatic overprinting. Is this really the case? The answer is NO!

In the Earth’s mantle, HSE are concentrated in base-metal sulfides (BMS), which have a low melting temperature, a high wetting capacity and are important metasomatic agents of the mantle [1]. Peridotites show evidences of magmatic overprinting. Depending on P-T-FeO-Fs2-O2 parameters, magmas en-route to the surface precipitate metasomatic BMS within the mantle column, leading to significant S, Pd±Pt±Rh enrichments at the sample scale [1-4]. The resulting high Pd/Ir ratios can thus not be used to constrain the P-T conditions of metal-silicate differentiation or the composition of the late veneer. Metasomatic BMS may also have suprachondritic Pt/Os ratios, especially when related to pyroxenite and eclogite-derived melts. Over the few Gy that crust recycling operated, such high Pt/Os ratios will evolve toward radiogenic 187Os/186Os ratios, well in excess of any outer core composition used for core-mantle interaction modelling [5]. The radiogenic 186Os/188Os ratios of plume lavas can be explained by melting of a peridotite enriched in such metasomatic BMS [5] and thus can not be used as unique geochemical evidence for core-mantle exchange.

In any case, the use of HSE and Os isotopic signatures to constrain planetary processes requires an understanding of the origin of BMS and HSE-Os signatures via combined studies of BMS petrology, HSE and Os isotopes.

Adsorption of 90Sr and 239Pu on natural colloïds of alpine soil solution

FABIENNE LUISIER1*, PHILIPP STEINMANN2, JEAN-LUC LOIZEAU3, MICHAEL KRACHLER4, HANS-RUDOLF PFEIFER5 AND PASCAL FROIDEVAUX1

1IRA, CHUV, Grand Pré 1, 1007 Lausanne, Switzerland
2FOPH, 3097 Liebefeld, Switzerland
3Institute F.-A. Forel, University of Geneva, 10 Route de Suisse, 1290 Vessoix, Switzerland
4Institute of Geosciences, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany
5CAM, University of Lausanne, 1015 Lausanne, Switzerland

Fall-out radionuclides (Pu and 90Sr) are expected to migrate slowly within the soil column. Based on published evidences of colloidal migration in natural water, we hypothesize that the migration of Pu and 90Sr can be enhanced if they are adsorbed on colloids.

Method

Three soils have been selected in the Central Alps of Switzerland. Plastic suction cups were installed at three depths in order to collect the soil solution. Part of the soil solution was ultrafiltrated at 10 kDa. TOC, Ca, Fe, Al, and Si concentration were measured in all fractions. Pu was measured using sf-ICP-MS and 90Sr was measured through the decay of its daughter 90Y in a proportional counter, both after careful radiochemical separation.

Results

Activities of 239Pu between 0.01 and 0.08 mBq/L were measured in the bulk soil solutions. 40-90 % of the 239Pu was associated with colloids >10 kDa. Moreover, we observed a significant correlation between the activity of Pu and the degree of degradation of the organic matter present in the solution. Between 4 and 16 mBq/L of 90Sr were measured in the bulk soil solutions. The 90Sr was generally not detectable in the colloidal fraction, but measurable in the truly dissolved fraction <10 kDa indicating that the Sr is mainly present as truly dissolved species in the soil solution.