Preliminary results for the interactions between two sparingly soluble solid phases in Cr(OH)₃(s) and birnessite suspension

Yeon-Jin Lee¹, Bora Min², Phung Ngoc Manh¹ and Giehyeon Lee¹*

¹Department of Earth System Science, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea (*correspondence: ghlee@yonsei.ac.kr)

²Hazardous Substance Research Team, Korea Basic Science Institute, 5th St. Anam-dong, Sungbuk-gu, Seoul 136-701, Korea

Contamination of groundwater by hexavalent chromium of natural origin has been reported elsewhere. Yet the mechanisms for the natural Cr(VI) contamination remain unclear especially under neutral and basic pH conditions.

This study investigated the interactions of two sparingly soluble solid phases between Cr(OH)₃(s) and birnessite. The rates and extents of Cr(VI) release from Cr(OH)₃(s) were examined in the presence of synthetic birnessite, the most common type of manganese oxides in the environment. The suspensions were prepared with 1 g/L each of Cr(OH)₃(s) and/or birnessite in 0.05 M NaNO3 at pH 7, 8, and 9, where the solubility of Cr(OH)₃(s) remains constant at minimum. The values of pH were maintained using 10 mM MOPS (pH 7), TRIS (pH 8), or borate (pH 9) buffers. Dissolved Cr or Mn was not detected at all pHs examined when either solid phase were present alone. By contrast, substantial amounts of dissolved Cr(VI) were released from Cr(OH)₃(s) in the mixed suspensions. The rate and extent of Cr(VI) release increased with increasing pH. Our previous results showed that the oxidative dissolution of Cr(OH)₃(s) by amorphous MnO₂(s) also increased with pH at pH 6 - 8 although the heterogenous redox reactions between aqueous Cr(III) species and MnO₂(s) should be proton-consuming. These previous results were ascribed to anioic sorption behavior of Cr(VI) because the extent of Cr(VI) soption to the the reacting solid phases increased with decreasing pH. However, Cr(VI) sorption to either solid became negligible at $pH \ge 8$, indicating that the larger amount of Cr(VI) released at pH 9 compared to that at pH8 cannot be explained only by sorption. We will present the possible mechanisms for pH dependence of the solid-solid interaction.

Aerosol chemical composition and source characterization during 2008 VOCALS REX

Y.-N. LEE¹*, S. Springston¹, J. Jayne², J. Wang¹, J. Hubbe³, G. Senum¹, J. Brioude⁴, L. Alexander³, L. Kleinman¹ and P. Daum¹

¹Atmospheric Sciences Division, Brookhaven National Laboratory, upton, NY 11973, USA (*correspondence: ynlee@bnl.gov)

²Aerodyne Research Inc., Bellerica, MA 01821, USA

³Pacific Northwest National Laboratory, P.O.Box 999, K8-88, Richland, WA 99352, USA

⁴NOAA Earth System Research Laboratory, 325 Broadway, CSD04, Boulder, CO 80305, USA

Chemical composition of aerosol particles ($D_p \le 1.5 \ \mu m$) over the northern Chilean coastal waters was determined on board the US DOE G-1 aircraft during VOCALS experiment between October 16 and November 15, 2008. The chemical species determined included SO₄²⁻, NO₃⁻, NH₄⁺, and total organics (Org) using an Aerodyne Aerosol Mass Spectrometer, and SO4², NO3⁻, Cl⁻, CH3SO3⁻, NH4⁺, Na⁺, Mg²⁺, Ca²⁺, and K⁺ using a particle-into-liquid sampler-ion chromatography (PILS-IC) technique. The results show that the marine boundary layer (MBL) aerosol mass in the study domain was dominated by non-sea-salt SO₄²⁻ followed by Na⁺, Cl, Org, NH₄⁺, and NO₃⁻, in decreasing importance; CH₃SO₃⁻, Ca^{2+} , and K⁺ rarely exceeded the limits of detection of ~0.05 and ~0.15 μ g/m³ for anions and cations, respectively. The SO_4^{2-} aerosols were strongly acidic as the equivalent NH_4^+ to SO_4^{2-} ratio was typically less than ~0.2; this inference of high acidity is consistent with on-line conductivity measurement of aqueous samples collected by the PILS. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained more than half equivalencies. They are believed to be externally mixed with the sulfate aerosols as the equivalent H₂SO₄ concentrations far exceeded that of Cl⁻. Dust particles appeared to play a minor role based on volume differences between that derived from observed mass and calculated using particle size distributions. Because the aerosol SO₄² concentrations were substantial (>0.5 µg/m³) exhibiting a strong gradient toward the land, and the ocean-emitted dimethylsulfide and its oxidation product, CH₃SO₃, were typically very low (i.e., ≤ 40 parts per trillion, and 0.05 μ g/m³, respectively), the SO_4^{2-} aerosols observed in the northern Chilean coastal MBL are believed to be mainly of terrestrial origin. Back trajectory calculations indicate sulfur emissions from power plants and smelters along coastal regions of Peru and Chile are plausible sources of these SO_4^{2-} aerosols.