Isotopic clues (U-series, ¹⁴C, ¹³C, ¹⁸O) on growth process and age of Arctic fissure calcretes (endostromatolites) from Northern Canada

CLAUDE HILLAIRE-MARCEL¹, BASSAM GHALEB¹, PIERRE DESCHAMPS^{1,2} AND BERNARD LAURIOL³

¹GEOTOP-UQAM, CP 8888 Montreal (Qc) H3C 3P8 Canada (*correspondence: ghaleb.bassam@uqam.ca)

²CEREGE, BP 80, 13545 Aix-en-Provence cedex 04, France
³Dept of Geography, University of Ottawa, Ottawa (ont.) K1N 6N5, Canada

Fissure calcretes could represent early continental forms of life in the Earth's history and are of interest for exploration purposes on other planets. They are observed filling diaclases in permafrosted karsts from Arctic environments and consist of secondary carbonates with layered and/or dendritic submillimetric microstructures, suggesting sub-aerial bacterial activity under relatively extreme climatic conditions. We report here on ²³⁸U, ²³⁴U, ²³⁰Th, ²²⁶Ra, ¹⁴C, ¹³C & ¹⁸O analyses of a few specimens from Bear Cave (Yukon). A first sample vielded inconsistent ¹⁴C- and ²³⁰Th-ages (ranging from bottom to top of the concretion10-4 ka and 260-55 ka, respectively). Higher resolution measurements in a second sample better illustrate trends from the layer immediately attached to the host rock (here Paleozoic limestones) and the outer, columnar surface of the concretion: i) ²³⁰Th/²³⁸U activity ratio decrease from near secular equilibrium values to appr. 0.2; ii) ²³⁸Uconcentrations increase from ~ 2 to ~ 6 ppm, and iii) ²²⁶Ra/²³⁰Th activity ratios increase from near secular equilibrium values to 1.2. This pattern suggest a pseudo-Rayleigh fractionation process with redistribution of U-series isotopes from the host-rock into the calcrete growth layers, more or less in function of their relative solubility. Some addition of more soluble elements relating to water fluxes cannot be ruled out. Stable carbon isotopes suggest a similar process with a progressive enrichment in ${}^{13}C$ (up to +8.5 % vs. VPDB) attributed to kinetic fractionation with freezing of water inducing outgazing of an isotopically light CO2 with precipitation of a ¹³C-enriched calcite. The trend for a progressive enrichment in ¹⁴C suggests partial exchanges with the atmospheric CO2 circulating in bedrock fissures. Thus, if ¹⁴C and U-series methods cannot be used to set the age of such calcretes, they provide information on their accretion process. In view of the excess ²²⁶Ra observed throughout most of the concretion, the overall age of the study specimen cannot exceed a few thousand years (i.e., mid- to late-Holocene), but one cannot estimate any precise duration for the growth phase within this interval.

He-CO₂ characteristics of submarine and subaerial fluids of the Costa Rica forearc

D.R. HILTON¹, E. FÜRI¹, T.P. FISCHER², C. RAMÍREZ³, M. TRYON¹, P.H. BARRY¹, K. BROWN¹, G. ALVARADO³, W. MONTERO³ AND P. DENYER³

¹Scripps Inst. Oceanography, La Jolla, CA 92093, USA (drhilton@ucsd.edu)

²Univ. of New Mexico, Albuquerque NM, 87131 USA

³Escuela Centroamericana de Geología, Univ. Costa Rica, San José, Costa Rica.

We report He-CO₂ isotopic and relative abundance results for groundwater and cold seep fluids from subaerial (Nicoya Peninsula/Pacific Coast) and submarine segments of the Costa Rica (CR) forearc, respectively. Our aim is to assess and characterize shallow outputs from the subducting slab – in terms of chemistry and fluxes - for comparison with deep(er) slab outputs sampled via arc magmatism at the volcanic front.

All samples indicate a strong and variable contribution of mantle-derived He to the CR forearc. Groundwaters on Nicoya and the adjacent coast have ³He/⁴He ratios significantly above crustal production values – from 0.45 to $3R_A$ (R_A = air ³He/⁴He), which equates to a mantle contribution up to ~38 % of the total He. $CO_2/^3$ He ratios span 3 orders of magnitude (0.3-300 x 10⁹) with δ^{13} C values mostly low (-15 to -20 ‰). The maximum ³He/⁴He ratio off-shore is 1.4 R_A, at Jaco Scar, the δ^{13} C values span a much greater range (-11 to -60 ‰) and the fluids show greater super-saturation in CO_2 , up to 0.34 ccSTP/gH₂O. In contrast, arc front volatiles have ³He/⁴He ratios between 6-8 R_A, a narrow range of $CO_2/^3$ He ratios (~ 10¹⁰) and mostly high δ^{13} C values (-6 to -3 ‰).

There is a clear contribution of mantle volatiles to both the forearc and arc front. At the forearc, this contribution occurs from the mantle wedge and/or the lithospheric mantle of the subducting plate via the plate interface and upper plate faults. It is dominated, however, by CO_2 – partially modified by the effects of methane oxidation - from the shallow slab and/or over-riding plate. Volatiles at the arc front reflect an enhanced mantle contribution superimposed upon a strong slab flux. Significantly, CO_2 fluxes at the forearc are extremely low compared to the arc front reflecting effective retention of slabderived CO_2 through the shallow subduction cycle. Recycling of CO_2 to the atmosphere is dominated by arc front emissions.