Fluid inclusion of Pan-African high grade metamorphism of Southern Sinai, Egypt

M.M. EL TOKHI* AND A. MUSALLUM

Geology Department, College of Science, United Arab Emirates University, P.O. Box 17551, Al Ain, United Arab Emirates (*correspondence: meltokhi@uaeu.ac.ae)

Fluid inclusions in the leucosomes of Wadi Feiran migmatites show that CO_2 , H_2O and (H_2O-CO_2) fluids were likely to have been present when partial melting began in these rocks. Low salinity, aqueous fluid, to lesser extent CO_2 rich, fluids are the most abundant fluids. The present study suggests that high density CO_2 inclusions were formed at the earliest stage, while H_2O inclusions were formed at a later stage. In an intermediate stage, low density CO_2 and $H_2O CO_2$ inclusions were formed. At the early stage of uplift and during the melt crystallization, the CO_2 bearing vapors were trapped at the time of crystallization of the melt was trapped as inclusions.

Origin of pargasitic megacryst in the neogene volcanic rocks of central Iran

M.H. EMAMI AND R. MONSEF*

Petrology Group, Geology Department, Basic Science Faculty, Tarbiat Modares University, Tehran, Iran (*correspondence: zaos13000@yahoo.com)

The exposure of Neogene volcanic rocks mainly in Qom province in Iran that belongs to the Urumieh-Dokhtar Magmatic Arc (UDMA) as Sakht-e-Hesar and Khastak area (Fig. 1). The Neogene volcanic activities are divided into two phases: Ngv₁ and Ngv₂. At the first stage (Ngv₁), volcanic rocks contain basalt to andesitic-basalt as lava or pyroclastic materials. The explosive event was followed by the volcanic to sub-volcanic associations of Ngv2 with products of mainly andesitic to rhyiolitic composition (second stage) [1]. This volcanic complex consists of few centimetre amphibole megacrysts that mineral geochemistry analyses present them as pargasite. These amphiboles transformed to pyroxene, plagioclase and magnetite which indicate reaction between sub-alkaline magma and pargasite megacrysts. It seems that these megacrysts are originated from metasomatized mantle during fractional melting. Probably, these amphiboles ascend and emplacement in magma chamber and non-equilibrium geochemistry relation was found with saturated melt. The mantle metasomatism patterns in this area are inferred from subduction of the Neo-Tethys beneath mantle wedge of the Central Iranian Block during Mesozoic period.

Figure 1: Structural map of Iran and selected Neogene complex

[1] Emami (1991) Explanatory text of the Qom quadrangle map, Geological Quadrangle No. E6, Geological Survey of Iran.