Ammonium-bearing clinopyroxene: A potential nitrogen reservoir in the Earth's mantle

A. WATENPHUL*, B. WUNDER AND W. HEINRICH

Deutsches GeoForschungsZentrum (GFZ), Section 3.3, Telegrafenberg, 14473 Potsdam, Germany (*correspondence: watenphul@gfz-potsdam.de)

K-bearing high-pressure phases generated at subducting slab and upper mantle conditions may incorporate significant amounts of NH_4 [1]. High-pressure clinopyroxene (cpx) from peridotites and eclogites may contain up to 2 wt% K₂O [2] depending on pressure and bulk composition. Cpx is thus another potential candidate for nitrogen transport into the deep Earth.

We experimentally investigated the incorporation of NH₄CrSi₂O₆ and NH₄AlSi₂O₆ components into diopside in the pseudobinary system CaMgSi₂O₆-NH₄(Cr,Al)Si₂O₆. NH₄-incorporation follows the coupled substitution Ca²⁺ + Mg²⁺ \leftrightarrow NH₄⁺ + (Cr, Al)³⁺.

Experiments were performed in a rotating multi-anvil press using oxide mixtures with varying $CaMgSi_2O_6/\Box(Cr, Al)Si_2O_6$ -ratios plus excess NH_4OH solution at 12 GPa, 750°C, and 13.5 GPa, 725°C. Run products were characterized by SEM, powder XRD with Rietveld refinement, and temperature-dependent IR spectroscopy. Major element chemistry of cpx was determined by EMP.

Runs produced cpx as major phase, along with additional Cr- or Al-bearing phases. NH₄ incorporation into cpx is shown by IR spectroscopy, where at room temperature the NH₄ v₄-vibration mode appears at 1414 cm⁻¹. Between -180 and 200°C this band shifts by about 30 cm⁻¹, whereas the lattice vibration modes shift only to very minor extents. NH₄ contents derived from IR spectra amount to several hundred with a maximum of about 1500 wt ppm NH₄. This holds for incorporation of the NH₄Cr-component; uptake of the NH₄Al-component is significantly lower. NH₄ concentrations estimated by EMP determination of Cr and Al and assuming charge balance broadly agree with these values. Incorporation of small NH₄ and (Cr, Al) amounts into diopside has very minor effects on its lattice parameters; only a slight increase in the *c* lattice parameter is observable.

It is demonstrated that a small but significant ammonium solubility in cpx is possible at high-pressure. Considering the proportion of cpx in the upper mantle (~10 Vol%), cpx possibly represents an important reservoir for nitrogen in the deep Earth.

[1] Watenphul et al. (2009), Am Mineral. 94, 283-292.

[2] Bindi et al. (2002) Eur. J. Mineral. 14, 929-934.

XAS study on Cr³⁺ local environment in ruby samples

P. WATHANAKUL^{1,3}*, W. WONGKOKUA² AND S. PONGKRAPAN¹

¹Department of Earth Sciences, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand (*correspondence: pwathanakul@gmail.com) (spongkrapan@yahoo.com)

²Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand (fsciwww@ku.ac.th)

³The Gem and Jewelry Institute of Thailand (GIT)

Synchrotron Facility in Thailand

X-ray absorption spectroscopy (XAS), a non-destructive technique for material characterisation, can also be applied to study mineral and gem samples. The facility has been provided at Synchrotron Light Research Institute, Nakornratchasima, northeastern Thailand.

Experiment

The ruby samples were cut into parallel pieces perpendicular to c-axis. Cr content as well as other trace elements have been analysed by LA-ICP-MS prior to the XAS experiment. A piece of each sample were doped with beryllium compound by heating at 1700 °C for 15 hrs. X-ray absorption near edge spectra of the samples were measured.

Figure 1: Difference in XANES spectra of a ruby sample, untreated and doped with Be.

Discussion of the Results

Cr-O-Cr environment has been suggested (Fig. 1, untreated sample); this has also been confirmed by the photoluminescence spectroscopy for the presence of n-lines [1]. The XANES spectra of the same samples doped with Be showed significant deviation from the untreated ones. Therefore, the dopant, i.e., Be^{2+} influents the Cr^{3+} environment. Applications to ruby geographic origins and treatments have been expected.

[1] Wongkokua et al. (2009) submitted to J. Phys.: Conf. Ser.