Solubility of CePO₄ and YPO₄ in H₂O, H₂O-NaCl and H₂O-NaF at 800°C and 1 GPa: Implications for REE transport during high-grade metamorphism

P. TROPPER^{1,2}*, C.E. MANNING¹ AND D. HARLOV³

¹Dept. of Earth and Space Sciences, Univ. California, Los Angeles, CA 90095, USA

(*correspondence: Peter.Tropper@uibk.ac.at) ²Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria

³GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany

Monazite (CePO₄) and xenotime (YPO₄) are important accessory minerals because they host REE and Y and are useful for geochronology. It is therefore essential to understand their behavior during high-grade metasomatic processes. To constrain solubilities at high P and T, we carried out weight-loss experiments on synthetic single crystals of each phosphate at 800°C, 1 GPa, with H₂O, H₂O-NaCl or H₂O-NaF (methods of [1-3]). Results indicate that the molality (m, mol/kg H₂O) of CePO₄ and YPO₄ dissolved in pure H₂O is very low (CePO₄: 0.0006 m, YPO₄: 0.0002 m) but that CePO₄ solubility increases strongly with increasing NaCl to 0.021 m at 40 mol% NaCl, similar to fluorite [3] and calcite [4]. Solubility of YPO₄ increases only moderately, to 0.0037 m at the same NaCl content. Thus CePO₄ shows a stronger solubility enhancement by NaCl than YPO₄. Data from the NaF-H₂O system show an enormous increase in solubility of both phosphates: CePO₄ and YPO₄ solubility increase to 0.22 and 0.49 m in only 10 mol% NaF; YPO₄ thus shows stronger solubility enhancement. These data support previous indications that REE and Y mobility are strongly promoted by complexing with Cl and especially F in the aqueous phase. Because F is readily partitioned into high-grade fluids, even small amounts of this element in metasediments will yield at least local REE metasomatism during devolatilization reactions associated with high-grade metamorphism.

[1] Manning & Boettcher (1994) American Mineralogist **79**, 1153-1158. [2] Tropper & Manning (2005) American Mineralogist **90**, 502-505. [3] Tropper & Manning (2007) Chemical Geology **242**, 299-306. [4] Newton & Manning (2002) American Mineralogist **87**, 1401-1409.

Redox reactions induced by hydrogen in nuclear waste repository: An experimental study

L. TRUCHE^{1,2}*, G. BERGER³, C. DESTRIGNEVILLE², D. GUILLAUME² AND E. GIFFAUT¹

¹ANDRA, 1/7 rue Jean Monnet, 92290 Châtenay-Malabry, France (*correspondence: truche@lmtg.obs-mip.fr)

²Université Toulouse, LMTG, 14 av. E. Belin, 31400 Toulouse, France

³CNRS, LMTG, 14 av. E Belin, 31400 Toulouse, France

Corrosion of steel canisters stored in deep geological nuclear waste repository leads to the generation and accumulation of H_2 gas in the surrounding environment. This study focussed on the mechanism and rate of redox reactions induced by the accumulation of H_2 in an argilite host-rock.

Preliminary batch experiments carried out with Callovo-Oxfordian argilite [1], synthetic porewater and H_2 gas led to an important H_2S production in only few hours at 250°C to few months at 90°C. In order to explore whether H_2S can originate from sulphate or pyrite reduction we performed dedicated experiments.

Sulphate reduction experimented in diphasic systems (water+gas) at 250-300°C and under 4 to 16 bar H₂ partial pressure exihibits a high activation energy (131kJ/mol) and requires H₂S initiation and low pH condition as already observed in other plublished TSR experiments [2, 3]. The corresponding half-life is 210,000 yr at 90°C (thermal peak of waste repository). These features can be modelled by three chemical steps between H₂ and non symmetric sulphate species. Heterogeneous reactions were explored by using magnetite, an usual steel corrosion by-product and a well known catalyst for redox reduction [4, 5]. First results showed enhanced reduction rates.

Beside TSR, pyrite reduction into pyrrhotite is another possible H_2 sinks. Rates measured under slighly alkaline buffered pH conditions (calcite) in the 90-180°C interval showed a fast reaction proportional to the hydrogen pressure.

In addition to the contribution for the nuclear waste storage assessment, this study may also provide relevant conclusions in the understanding of redox processes governing hydrothermal systems.

[1] Andra, Dossier (2005) Public report. [2] Cross et al. (2004) Org Geochem. 35, 393-404. [3] Zhang et al. (2008) GCA 72 (14), 3518-3530.[4] Peterson et al. (1996) Colloids and Surfaces 107, 77-88. [5] Shevdov & Tremaine (2000) Journal of Solution Chemistry 29, 889-904.