How to improve the accuracy of cosmogenic ³He determinations?

P.-H. BLARD

CRPG-CNRS-Nancy Université (blard@crpg.cnrs-nancy.fr)

³He is a powerful cosmogenic isotope for quantifying a large variety of Earth surface processes. However, accurate and precise applications of cosmogenic ³He require a proper determination of the non cosmogenic ³He components. Many studies based on the analysis of cosmogenic ³He have used the two step routine (1st crushing, 2nd melting) proposed by Kurz, (1986) [1] to correct for the magmatic 3 He component. However, the initial crushing step may induce an undesirable release of cosmogenic ³He, leading to underestimate the cosmogenic ³He concentration. Moreover, the standard correction proposed by [1] is valid only if the ⁴He extracted by melting the samples is entirely magmatic. This assumption is however not satisfied in many cases because significant amounts of radiogenic ⁴He may be present in the analyzed phenocrysts. Neglecting this radiogenic production may induce significant overestimate of the magmatic ⁴He correction and, hence, underestimate of the actual cosmogenic ³He concentration.

In the present study are presented and discussed several techniques that may be useful to overcome these different issues and to improve the accuracy of cosmogenic ³He measurements:

(i) 'Cosmogenic ³He isochrons' can be built by analyzing several phenocrysts replicates. The main advantage of this alternative method is to avoid the preliminary crushing step, and thus to avoid any bias due to possible crushing release of cosmogenic ³He [2].

(ii) To account for the influence of radiogenic ⁴He, the appropriate approach depends on the erosion history of the sample, which determines the helium closure age to exposure age ratio [3]. In any case it is however important to properly estimate the radiogenic ⁴He production rate, by measuring the U and Th concentrations of both phenocryst and host, and the phenocryst size. To illustrate the importance of this radiogenic correction, the present work revisits several previous studies in which the radiogenic ⁴He was not recognized.

[1] Kurz (1986) *Nature* **320**, 435-439. [2] Blard & Pik (2008) *Chem. Geol.* **251**, 20-32. [3] Blard & Farley (2008) *EPSL* **276**, 20-29.

The dire consequences of being away from the interface: What peat bogs tell us about limits to anaerobic organic matter decomposition

C. BLODAU, J. BEER AND M. SIEMS

Limnological Research Station, University of Bayreuth, 95440 Bayreuth (christian.blodau@uni-bayreuth.de)

Thermodynamic disequilibrium at redox interfaces drives biogeochemical transformations in soils and sediments. While overall disequilibrium persists, key processes in anaerobic organic matter decomposition may approach partial thermodynamic equilibria, which can result in in their slowdown. We hypothesized that in diffusion dominated systems, for which thick peat deposits provide a model, thermodynamic constraints can pose a limit to methanogenic decomposition of organic matter and ultimately to closing the carbon cycle. To test this hypothesis we (I) conducted controlled column experiments with homogenized peat over an 18 month period, (II) investigated transport, *in situ* respiration pathways, rates and thermodynamic conditions in a nothern peatland, and (III) modelled depth profiles of CO_2 and CH_4 in the deposits.

Vertical transport in the peatland was dominated by diffusion leading to the buildup of DIC and CH4 with depth (5500 µmol L⁻¹ DIC, 500 µmol L⁻¹ CH₄). Highest DIC and CH₄ production rates occurred close to the water table (decomposition constant $k_d \sim 10^{-3}$ to $10^{-4} a^{-1}$) and decreased to about $k_d = 10^{-7} a^{-1}$. The accumulation of metabolic endproducts diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (-20 to -25 kJ mol⁻¹ CH₄). The methanogenic precursor acetate also accumulated (150 μ mol L⁻¹). In line with these findings, CH₄ was formed by hydrogenotrophic methanogenesis at Gibbs free energies of -35 to -40 kJ mol⁻¹ CH₄. This was indicated by an isotopic fractionation $\alpha_{CO_2-CH_4}$ of 1.069 to 1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol⁻¹ substrate. In peat columns with homogenenous peat-sand mixtures of 50 %, 15% and 5% dry weight, steady state CO₂ production also decreased from about 10 to 0 nmol $cm^{-3} d^{-1}$ and of CH₄ from 1 to 0 nmol cm⁻³ d⁻¹ with depth. Very similar depth profiles of concentrations and volumetric rates developed near endproduct thresholds of 600µmol CH₄ and 10 mmol L⁻¹ CO₂, despite the differences in organic matter content. The modeling exercise showed that a consistent development of CH₄ concentration profiles over time in the columns could only be accomplished with rates of acetoclastic methanogenesis decreasing to 0 near a critical Gibbs free energy of about -27 KJ mol⁻¹. The results thus suggest that even in absence of inorganic electron acceptors, respiration rates are likely higher near the redox interface to the atmosphere due lower respiration to endproduct concentrations. Similar effects ensue when rates of transport are elevated or pools of CO₂ and CH₄ are eliminated.