U-Pb dating of detrital zircons by laser ablation inductively coupled quadrupole mass spectrometry

B.J. SHAULIS AND T.J. LAPEN

Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA (bshaulis@uh.edu, tjlapen@uh.edu)

The use of LA-ICPMS has become increasingly popular for U-Pb dating of zircons and offers several advantages over TIMS and SIMS methods: decreased sample prep and data acquisition time and increased cost effectiveness [1]. Although many labs utilize magnetic sector instruments for enhanced sensitivity and higher mass resolution, next-generation quadrupole-based ICPMS instruments have the potential to yield comparable U-Pb age data of zircon. To demonstrate this, we are using a Varian 810 Quadrupole coupled with a Cetac 213 nm wavelength laser. The Varian ion optics include a 90° off-axis ion mirror that focuses the ion stream into the mass analyzer allowing more than 80% of the ions to be transported through the ion optics resulting in high sensitivity. The detector consists of an all digital, extended-range, scaling pulse detector developed by ETP Electron Multipliers [2]. The detector design consists of an ion-to-electron conversion section (conversion dynode) followed by a controllable electron attenuation section. A 9-decade dynamic range and linear response of the detector is the result of the controllable electron attenuation section which can vary the ion detection efficiency from 90% down to .001%. Tests with variable concentration natural U solutions where the ²³⁸U intensity would vary across all of the detector attenuation thresholds but the ²³⁵U intensity would always be unattenuated indicate that there is no measureable bias in the measured $^{235}U/^{238}U$ ratio due to signal attenuation. This test ensures suitability for isotope ratio measurements that require a substantial dynamic range (e.g., U/Pb and ²⁰⁶Pb/²⁰⁴Pb ratios in zircon).

The results of our tests with various-aged zircon standards: temora-2, peixe, stettin-1, FC5z (Duluth Complex), indicate that we can perform *in situ* U-Th/Pb age measurements with external reproducibility of <1% (2SD) for pooled ages, using a 25 to 50 μ m spot size. Errors of individual ages (single spot analyses) are generally between 1-7% (2SD), making this technique ideal for sediment provenance studies as well as dating zircon-bearing igneous rocks.

[1] Gehrels *et al.* (2006) Paleo. Soc. Pap. (11) [2] Stresau and Hunter (2001) SGE Tech. article TA-0103-A.

Subduction-related B and H isotope fractionations across the Mariana arc: Consequences for recycling

A.M. SHAW¹, E.H. HAURI², R.J. STERN³, J. HAWKINS⁴ AND A. GURENKO¹

 ¹Woods Hole Oceanographic Institution, Woods Hole MA 02543 (ashaw@whoi.edu, agurenko@whoi.edu)
²DTM, Carnegie Inst. of Washington, Washington DC 20015
³University of Texas at Dallas, Richardson TX, 75083 USA
⁴S.I.O., La Jolla CA, 92093, USA

We present new B and H isotope data, along with volatile, trace and major elements for olivine-hosted melt inclusions from a suite of cross chain volcanoes extending across the Mariana arc from Guguan volcano to the Mariana Trough. H and B isotopes, H₂O, CO₂, S, F and Cl abundances, as well as trace elements, have been determined by SIMS. Our results show that enrichments in fluid-mobile elements generally associated with the subducting slab (e.g., Ba, B) decrease systematically across the arc into the back-arc. However, water contents in cross-chain samples, 230 km above the subducting slab, show similar values to the arc-front samples, implying that water release is a continuous process across the arc and that trace element proxies for slab fluids are decoupled from actual water contents. The isotopic composition of water changes during progressive dehydration, as expected [1]; δD values are highest at the arc front, $\sim -10\%$, and decrease to values as low as -80% in the back-arc. Likewise, B isotopes decrease systematically from δ^{11} B values as high as 5.9-8.5% at the arc front, consistent with values previously reported for Guguan arc front lavas ($\delta^{11}B = 5.0-6.2\%$ [2]), down to values as low as -14‰ in back-arc melt inclusions, extending beyond the range inferred for MORB (-5 to -9‰ [3]) and to values observed in OIBs (down to -15% [4]).

Our observations demonstrate that fluid release behind the main volcanic front can be substantial and that the dehydration process has fractionated H and B isotope compositions. Our findings suggest that B and H isotopes of OIBs containing recycled slab components would be low.

[1] Shaw *et al.* (2008) *EPSL* **275**, 138-145, [2] Ishikawa and Tera (1999) *Geology* **27**, 83-86 [3] leRoux *et al.* (2003) Abstr. Fall AGU #V51A-03 [4] Chaussidon and Marty (1995) *Science* **269**, 383-386