Natural occurrences of liquid CO2 emissions in the Okinawa Trough: Geological setting and variations of gas composition

GREGOR REHDER1, KO-ICHI NAKAMURA2, JENS SCHNEIDER V. DEIMLING1, ANTJE BOETIUS3, DIRK DE BEER3, FUMIO INAGAKI4, MATTHIAS HAECKEL5 AND STINE THOMAS1

1Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany (gregor.rehder@io-warnemuende.de, jens.schneider@io-warnemuende.de, stine.thomas@io-warnemuende.de)
2Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan (koichi.nakamura@aist.go.jp)
3Max Planck Institute for Marine Microbiology, Bremen, Germany (dbeer@mpi-bremen.de, aboetius@mpi-bremen.de)
4Kochi Institute for Core Sample Research, JAMSTEC, Nankoku, Japan (inagaki@jamstec.go.jp)
5Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel, Germany (mhaeckel@ifm-geomar.de)

Three out of four sites known worldwide where liquid CO2 is accumulated at – and/or emanating from - the seafloor, are located in the Okinawa Trough, South China Sea, west of Japan. All liquid CO2 seep sites known so far are situated in the Okinawa Trough, South China Sea, west of the Yonaguni Knoll IV area, the latter being the working area of SO 196 expedition in March, 2008, visited two of these sites, the Hatoma Knoll and Yonaguni Knoll IV area, the latter being the working area of several of the presentations of this session.

We describe the geological setting of liquid CO2 emissions in the Okinawa Trough. The condensed CO2 is generated by complex phase separation processes of the hydrothermal fluids, with various additional components present, in particular CH4 and H2S. Data from Hatoma Knoll show distinct variations in gas composition at different vent sites on small spatial scale. We evaluate the phase transition and transport processes of the liquid CO2-rich phase which may cause these variations, and emphasize the great potential as well as some caveats of the use of natural CO2-emitting sites as analogues for future deliberate marine carbon storage scenarios.

TI isotope constraints on the origin of the Earth’s Pb paradox

M. REHKÄMPER1, R.G.A. BAKER1,2 AND B.J. WOOD3
1IARC, Department of Earth Science and Engineering, Imperial College, London, SW7 2AZ, UK
2The Natural History Museum, London, SW7 5BD, UK
3Department of Earth Sciences, University of Oxford, Oxford, OX1 4BH, UK

The Earth’s Pb isotope systematics have been the subject of debate since Patterson’s pioneering work provided the first accurate estimate of the age of the solar system [1]. A particularly contentious issue is the origin of the radiogenic 206Pb/204Pb and 207Pb/204Pb isotopic ratios of the Earth’s mantle. It is unlikely that this signature is solely due to the accretion of the Earth from volatile depleted matter. The radiogenic Pb isotope composition of the bulk silicate Earth (BSE) is thus thought to reflect U/Pb fractionations that occurred during the accretion, differentiation or chemical evolution of the Earth. Recent partitioning experiments that have investigated the behavior of Pb during metal/sulfide-silicate segregation at high pressures and temperatures have yielded conflicting results, however.

Lagos et al. [2] contend that Pb is not sufficiently siderophile and chalcophile to account for the high U/Pb ratio of the BSE. In this case, an alternative mechanism of Pb depletion is required and it has been suggested that this may involve degassing of Pb to a hot silicate atmosphere, which was subsequently lost during the giant impact. Such a scenario can be evaluated with the aid of the extinct 205Pb-205Tl decay system [3] in the context of current models of terrestrial accretion [4]. Studies of volcanic systems furthermore demonstrate that Tl is significantly more volatile during volcanic processes than Pb. Taken together, the data indicate that loss of Pb by degassing cannot have played a major role in establishing the U/Pb ratio of the BSE.

Other recent partitioning studies have shown that both Pb and Tl are moderately siderophile at high pressures and temperatures [5, 6]. Accretion models that apply such behavior can readily account for the Pb and Tl isotope systematics of the BSE, without requiring late volatile loss of Pb. At present, such as scenario thus provides the most reasonable solution to the terrestrial Pb paradox.