Geochemical results on the CO₂ georeactor sequestration tests at the Ogachi hot dry rock site, NE Japan

A. UEDA¹*, Y. NAKATSUKA¹, M. KUNIEDA¹, Y. KURODA¹, K. KATO^{2,4}, T. YAJIMA², H. SATOH², Y. ODASHIMA², K. SUGIYAMA³, A. OZAWA³, T. OHSUMI⁴, H. WAKAHAMA⁴, S. MITO⁴, Y. KAJI⁵ AND H. KAIEDA⁶

¹Kyoto Univ., C1-2-155, Katsura, Kyoto, 615-8540, Japan (*correspondence: a-ueda@earth.kumst.kyoto-u.ac.jp)

²Mitsubishi materials Corp., Kitabukuro, Omiya, Saitama, Japan (koikato@mmc.co.jp, tyajima@ mmc.co.jp, hsatoh@mmc.co.jp, yodasima@yahoo.co.jp)

³Mitsubishi Materials Natural Resources development Corp., Kitabukuro, Omiya, Saitama, Japan (sgym@mmc.co.jp, aozawa@mmc.co.jp)

⁴ Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizu, Kyoto, Japan (ohsumi@rite.or.jp, wakahama@rite.or.jp; mito@rite.or.jp)

⁵Chuo Kaihatsu Corp., Kawaguchi, Saitama, 332-0035, Japan (kaji@cknet.co.jp)

⁶Central Research Institute of the Electric Power Industry, Abiko, Chiba, Japan (kaieda@criepi.denken.or.jp)

Field Experiments

Field experiments of CO_2 sequestration into the Ogachi HDR have been examined for 4 years by our group. There are two injection/production wells (OGC-1 and 2), two major feed zones at depth of 700m and 1100m, where their temperatures are 170 and 210°C, respectively. CO_2 dissolved water (river water with dry ice) was directly injected into OGC-2 with tracers. Water samples are collected at the depth of ca. 800m by a sampler and monitored for their chemical and isotopic compositions. Dissolution or precipitation rates of calcite were determined by using a new technique of "*in situ* analyses" at the depth.

Results

The CO_2 and tracer concentrations decrease with the elapsed time. The injected CO_2 water is diluted with the reservoir fluid with 3 days and most CO_2 in them might be deposited as calcite by interaction with granitic rocks. The "in situ analyses" show that calcite precipitation was observed within 2 day after the injection. This supports the view that most of CO_2 injected might be fixed as carbonate.

Biological fractionations of quadruple sulfur isotopes in a stratified lake

Y. UENO¹, M. NAKAGAWA² AND N. YOSHIDA³

¹Global Edge Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan (ueno.y.ac@m.titech.ac.jp)

²Department of Applied Chemistry, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan

³Department of Environmental Science and Technology, Tokyo Institute of Technology, Midoriku, Yokohama, 226-8603, Japan

Ouadruple sulfur isotope system $({}^{32}S/{}^{33}S/{}^{34}S/{}^{36}S)$ is a potential new tracer not only for photochemically-induced non-mass-dependent reactions, but also for mass-dependent processes including biogeochemical reactions [1]. We have studied quadruple sulfur isotope ratios of sulfate and sulfide in a small monomictic lake Fukami-ike, central Japan, having a maximum depth of 8.0 m. The lake is eutrophic and is stratified from March to October, when green and purple sulfur bacteria (anaerobic photosynthesizer) are active at oxicanoxic boundary layer, and sulfate reducing bacteria produces hydrogen sulfide accumulated in an anoxic hypolimnion [2]. In August, systematic changes of δ^{34} S as well as Δ^{33} S and Δ^{36} S values was observed both for sulfate and sulfide in anoxic hypolimnion. Simple calculation assuming Rayleigh process yielded fractionation factors for ${}^{34}S/{}^{32}S$ (α -34) of 0.980, and mass dependent exponents λ -33 and -36 of 0.505 and 1.93, respectively. The results are consistent with sulfate reduction within a water column of the lake. Moreover, seasonal variation of Δ^{36} S/ Δ^{33} S relationship demonstrated that ³³S and ³⁶S signatures are potential indicators not only for microbial sulfate reduction but also for different sulfur metabolisms or cycles.

[1] Johnston *et al.* (2007) *GCA* **71**, 3929-3947. [2] Yagi (1996) *Water Ressources Research* **30**, 1823-1832.