Sulfide-bearing diamonds: The exception, not the rule

E. THOMASSOT^{1,2}, P. CARTIGNY² AND J.W. HARRIS³

¹McGill University, Montréal, Canada

(thomassot@eps.mcgill.ca)

²Institut de Physique du Globe de Paris, France

(cartigny@ipgp.jussieu.fr)

³University of Glasgow, UK (Jeff.Harris@ges.gla.ac.uk)

The paradox between the low sulfide content of mantle xenoliths (about 300 ppmS) and the overabundance of sulfide minerals entrapped in diamonds (70% of inclusions) points to a possible genetic link between these two minerals. Traditionally, sulfide-bearing diamonds are thought to have an equivalent origin to other gem diamonds. Geochemical measurements from sulfide-bearing diamonds including dating using the Re-Os chronometer have been used to constrain the history of whole suites of diamonds (assuming that all gem diamonds would be comparable).

In order to test this assumption, we have undertaken a detailed geochemical study of 113 sulfide-bearing diamonds recovered from 3 different diamondiferous pipes from the Kaapvaal craton, Jwaneng (Botswana), Kimberley Pool and Koffiefontein (South Africa). We measured the N-content and aggregation state of 134 diamond chips, by IR spectroscopy. Each fragment has then been characterized with respect to their C- and N-isotopic compositions.

Sulfide bearing diamonds are N-richer (800 at.ppm in average) than other silicate-bearing diamonds from the same mine, yet the nitrogen aggregation state, which reflects the efficiency of diffusion through the crystal, is limited to a maximum of only 12% of Type IaB). The diamonds also display a narrow range of δ^{13} C (from -8.4 to -3.1 ‰, st. dev. 1.5‰, excluding a single extreme value at -18.7‰). Associated δ^{15} N values range from -13.6 to 8.3‰, have a normal distribution and a median value of -5‰.

The C- and N-isotopic compositions of sulfide-bearing diamonds are typical for a mantle reservoir and, *a priori*, their carbon source does not differ from those of other diamonds. The narrow range of δ^{13} C values, however, is surprising and unexpected being characteristic of a rapid crystallization history, which is consistent with the high N-contents. More tellingly the low aggregation state is only compatible with a low temperature crystallization (T < 1000 °C).

We conclude that sulfide-bearing diamonds represent a distinct diamond population that formed rapidly in a relatively low temperature environment. Consequently, conclusions based on these specific diamonds (e.g. Re/Os ages) may not apply to other diamonds, even from the same mines.

Is there a common drive for the negative excursion of organic Carbon and the attenuated massindependent-Sulfur at 2.7 Ga?

CHRISTOPHE. THOMAZO^{1,2}*, M. ADER¹, J. FARQUHAR³ AND P. PHILIPPOT²

¹Laboratoire de géochimie des isotopes stables, Institut de Physique du Globe de Paris, place Jussieu, 75251 Paris, Cedex 05, France

(*correspondence: thomazo@ipgp.jussieu.fr)

²Laboratoire Géobiosphère actuelle et primitive, Institut de Physique du Globe de Paris, France

³Department of Geology, University of Maryland, College Park, Maryland, USA

In order to bring further insights into the prevailing environmental conditions during the δ^{13} C negative Fortescue Excursion attributed to an increase in methanotrophic biomass, we carried out a detailed carbon (12 C, 13 C) and multiple sulfur (32 S, 33 S, 34 S, 36 S) isotopic study through the entire pristine core drilled from the slightly metamorphosed 2.7 Ga Tumbiana Formation.

Organic $\delta^{13}C_{PDB}$ values vary markedly at meter scale and display a bimodal distribution with two maxima at -43 and -34%. This isotopic record, together with petrological and other geochimical proxies, cannot be explained by secondary processes such as diagenesis or metamorphism but likely reflects variable contributions of ¹³C-depleted methanotrophic biomass to the organic matter. Sedimentary pyrites display Mass-Independent-Fractionation of sulfur isotopes (MIF-S) with $\Delta^{33}S_{CDT}$ anomalies ranging between -0.24 and 1.64% (average 0.46%) and show a linear relationship between $\Delta^{33}S_{py}$ and $\Delta^{36}S_{py}$ with a $\Delta^{36}S/\Delta^{33}S$ ratio ~ -1.5, similar to that of most Mesoarchean rocks and probably related to changes in atmospheric composition (e.g. CH₄/CO₂ ratio). Recognition of positive correlation between the ¹²C-enrichment of organic matter and MIF-S suggests a genetic link between the $\delta^{13}C$ negative excursion and the observed increasing MIF-S fractionation of Late Archean rocks.

We propose that different types of metabolisms operating under various redox conditions were present in the Tumbiana paleo-environment and we suggest that the δ^{13} C negative Fortescue Excursion would reflect biotic methane assimilation which leds to a conjoint decrease in atmospheric methane concentration and transient increase in MIF-S fractionation before the Great Oxidation Event.