Unique redox behaviors induced by polysulfide and sulfide; Arsenic the latest example

G.R. HELZ*AND J.A. TOSSELL

Department of Chemistry and Biochemistry, University of Maryland, College Park MD 20742 (*correspondence: helz@umd.edu)

The polysulfide/sulfide (S_n^2/HS) couple controls many redox processes in euxinic waters. At fixed pH, higher S_n^{2} -/HS⁻ shifts platinum electrode potentials in the positive direction and raises theoretical pE. However S_n^{2}/HS^{-} mixtures affect individual metals and metal-oids in unexpected ways through complex formation; Sb^{III} is oxidized by higher S_n^2/HS^2 , as would be expected, but Mo^{VI} and Re^{VII} are reduced, counter to expectation. The latest curious example is As^{III}, which seems to be oxidized by HS⁻ even in the absence of S_n^2 . Much controversy surrounds this issue currently. Through a novel strategy that combines empirical data with ab initio computational results and estimated ionization constants, we have constructed a provisional thermodynamic model which predicts concentrations of thirty-two As^{III} and As^V oxythic monomers as a function pH, $\sum S^{-II}$ and $\sum As$ at any imposed pE. At the order of magnitude level, this model successfully predicts previously measured As₂S₃ solubilities. Assuming redox buffering by orpiment+realgar, the model predicts that As^V species contribute significantly to total solubility, especially at higher pH. Until now, papers discussing As species distributions claim that As thioanions must be either As^{III} or As^V species. The most important implication of the new model is that both kinds of thioanions are likely, even in the same solutions. The model rationalizes the counter-intuitive effect of sulfide on As redox chemistry, highlights critical information needs and provides a testable framework that can be used to guide future experimental studies.

In-run corrections for instrumental fractionation of boron isotopes by NTIMS: Filament material and loading matrix controls

N.G. HEMMING^{1,2}*, B. HÖNISCH² AND C. BOUMAN³

¹School of Earth and Environmental Sciences, Queens College, Flushing NY 11367 (*correspondence: hemming@ldeo.columbia.edu)

²Lamont-Doherty Earth Observatory of Columbia University, 61 Rt. 9W, Palisades, NY 10964

³Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany

Maximizing the potential of the boron isotope paleo-pH proxy depends on precise analyses of very small samples. Negative thermal ionization mass spectrometry (NTIMS) allows analysis of <1ng, but controlling mass fractionation is a major challenge, addressed in our group by routinely analysing each sample multiple times. A promising strategy for mass fractionation correction has been proposed [1]. Reproducibility for NIST 951, seawater and corals on Pt filament wires was 2.3‰, 6.2‰ and 4.6‰, respectively, but improved to 0.67‰, 0.19‰ and 0.34‰ for the same analyses using a correction factor determined by measuring mass $^{45}(BO_2)$ in addition to $^{43}(BO_2)$ and $^{42}(BO_2)$.

While testing the Thermo Scientific Triton multi-collector thermal ionization mass spectrometer in Bremen, Germany, five of six NIST 951 samples on Re filaments produced isotope ratios on average 3%o ±1.5%o lower than the expected $^{43}(BO_2)/^{42}(BO_2)$ of 4.005 [2]. We took advantage of the multiple collector capability, and measured the isotopologues $^{44}(BO_2)$ and $^{45}(BO_2)$. On isotope cross plots [1] the very large deviations from expected ratios of NIST 951 analyses form a trend line ($r^2=0.98$). However, the slope of the trend line for Re filaments is very shallow, and correcting to the recommended NIST 951 value would yield an unreasonably high apparent ¹⁸O/¹⁶O. Correcting to our best NIST 951 estimate yeilds an ¹⁸O/¹⁶O estimate of 0.00214, and applying the approach of [1] with this value improves the reproducibility to 0.21%. In addition to the loading matrix control [1], it appears that the measured values are sensitive to filament material. It is apparent that a better understanding of the ionization process has tremendous potential for improving the precision and accuracy of boron isotope measurements.

[1] Shen & You (2003) Anal. Chem. **75**, 1972-1977. [2] Hemming & Hanson (1994) Chem. Geol. **114**, 147-156.