Stable Mg isotope composition of Earth’s mantle
M.R. Handler¹, J.A. Baker¹, M. Schiller¹, V.C. Bennett² and G.M. Yaxley²
¹School of Geography, Environment & Earth Sciences, Victoria Univ., Wellington, New Zealand
(*correspondence: monica.handler@vuw.ac.nz)
²Research School of Earth Sciences, Australian National Univ., Canberra, ACT, Australia

Magnesium has three stable isotopes (24, 25, 26) and is Earth’s second most abundant lithophile element. The advent of MC-ICP-MS has allowed routine stable isotope analysis of Mg, yet no consensus exists on the isotopic homogeneity and composition of Earth’s largest Mg reservoir, the mantle, which contains >99% of Earth’s Mg [1, 2]. Moreover, it is uncertain whether the mantle and the magmas it produces have the same Mg isotope composition as chondrites and achondrites [3, 4]. For example, laser ablation MC-ICP-MS studies of mantle olivine [1, 2] have yielded contrasting results with one study measuring minimal isotopic variation [1], and another measuring large (2‰) variations in δ²⁵Mg [2] attributed to high-T mantle metasomatism and melt extraction. The Mg isotopic composition of Earth has been compared with meteoritic Mg in two recent studies [3, 4] also yielding contrasting results. In one case, Earth’s mantle was shown to have non-chondritic Mg [3], yet a study of Hawaiian basalts did not discern a Mg isotopic difference as compared to chondritic Mg [4].

We have determined the Mg isotope composition of olivines from 20 mantle xenoliths from east Australia, west Antarctica, Jordan, Yemen and Greenland. The xenoliths include fertile lherzolites through to depleted harzburgites and ‘dry’ peridotites through to apatite±amphibole-harzburgites and wehrlites, and represent early Archaean to Permian lithospheric mantle. Mg isotopes were determined by pseudo-high-resolution MC-ICP-MS on Mg purified to >99% by a series of chemical extraction techniques. The olivines have δ²⁵MgDSM=-0.20 to -0.09‰ with an external reproducibility of ±0.05‰. The data indicate the mantle is homogeneous within analytical uncertainties, with no variations correlated with lithospheric age or location, or degree of mantle metasomatism or fertility. Furthermore, no stable Mg isotope differences between the peridotites and pallasite olivine or chondrites are resolvable.


Timescales of crustal assimilation at intra-oceanic arcs: U-series and geochemical constraints from Lopevi Volcano, Vanuatu, SW Pacific
H.K. Handler¹, S.P. Turner¹, I.E.M. Smith² and R.B. Stewart³
¹GEMOC, Dept. of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia
(*correspondence: hlhandley@els.mq.edu.au)
²Department of Geology, University of Auckland, Private Bag 92019, Auckland, New Zealand
³Institute of Natural Resources, Massey University, Palmerston North, New Zealand

The extent and geochemical impact of crustal contamination during magmatic evolution in intra-oceanic subduction zone settings is assumed to be of minimal significance and is poorly constrained. However, acquiring such information is a first-order priority before meaningful timescales of magma generation and crustal residence beneath volcanoes can be determined.

Despite relatively homogeneous Sr-Nd isotopic compositions (compared to other Vanuatu arc lavas) of high-MgO basalts and differentiates erupted over the last 100 years at Lopevi volcano, the rock suite displays a strong negative correlation between ⁸⁷Sr/⁸⁶Sr isotope ratio and indices of differentiation (e.g. SiO₂). This presents compelling evidence for the interaction of rising mafic magmas with ‘primitive’ sub-arc crust and provides an excellent framework within which to investigate and ascertain timescales of crustal interaction using U-series data.

Quantitative geochemical modelling of whole-rock trace element ratios, ⁸⁷Sr/⁸⁶Sr isotope compositions and U-series data shows that assimilation of a relatively small-degree partial melt of ≥380kyr-old mafic oceanic crust (similar to Pacific- or Indian-MORB in ⁸⁷Sr/⁸⁶Sr isotopic composition) during fractional crystallisation of magma exerts major control on (²⁳⁰Th/²³²Th) and (²²⁶Ra/²³⁰Th) activity ratios of the lavas. The incorporation of higher (²³⁰Th/²³²Th) and lower (²²⁶Ra/²³⁰Th) assimilated material draws the samples much closer towards secular equilibrium than that of simple closed-system differentiation, reducing calculated apparent timescales of closed-system differentiation from Th isotope composition (10⁶-10⁷) by orders of magnitude. Modelling suggests that assimilation occurs extremely rapidly at Lopevi with maximum timescales for magma generation, differentiation and eruption in the order of 10² years.