The solubilities of the quaternary system Li$_2$CO$_3$+Na$_2$CO$_3$+K$_2$CO$_3$+H$_2$O at 273 K

Y. ZENG*, G.L. CEN, Z.Y. ZHENG AND X.F. LIN
Department of Geohemistry, Chengdu University of Technology, Chengdu, P. R. China, 610059
(*correspondence: zengy@cdut.edu.cn)

The salt-water system phase diagram is the direction for the comprehensive and utilization of saline brines. System Li$_2$CO$_3$ + Na$_2$CO$_3$ + K$_2$CO$_3$ + H$_2$O is one of the basic systems for carbonate alkaline brines.

Experimental Method
The isothermal evaporation method was used [1]. The experiments were done at (273.15 ± 0.1) K, and a thermostatic evaporator was used for evaporation. The composition of solution was determined by analytical method. The crystals were analyzed by X-ray diffraction.

The densities of solution were also determined by specific gravity bottle method [1] and used for the mass fraction calculation of components.

Discussion of Results
The phase diagram consists of five univariant curves, two invariant points and four crystallization fields corresponding to single salt Li$_2$CO$_3$, Na$_2$CO$_3$·10H$_2$O, K$_2$CO$_3$·3/2H$_2$O and double salt KNaCO$_3$·6H$_2$O. Double salt KNaCO$_3$·6H$_2$O is formed in this system, which was also founded in the Harvie’s study at 298 K [2]. Whereas, Na$_2$CO$_3$·10H$_2$O is the only crystal form for sodium carbonate, the heptahydrate and unihydrate sodium carbonate are not found.

Figure 1: The phase diagram of the system K$_2$CO$_3$ + Na$_2$CO$_3$ + Li$_2$CO$_3$ + H$_2$O at 273 K.

The work was supported by the National Nature Science Foundation of China (No. 40673050).

Fractionation of multiple sulfur isotopes during phototrophic S oxidation

1Department of Geology and Earth Systems Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA
(*correspondence: azerkle@umd.edu)

2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

3 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark

4Nordic Center for Earth Evolution and Institute of Biology, University of Southern Denmark, Odense, Denmark

Here we report multiple sulfur isotope measurements (33S, 34S, and 36S) of sulfur compounds associated with the oxidation of H$_2$S and S0 by the anoxygenic phototrophic S-oxidizing bacterium, Chlorobium tepidum. We measure small inverse isotope effects during H$_2$S oxidation, and slightly larger normal isotope effects during S0 oxidation, resulting in the net production of sulfate that is slightly depleted in heavy isotopes from the starting sulfide. Utilizing the fractionation factors for phototrophic S oxidation processes that we calculated from these experiments, we present a steady-state box model of the isotopic composition of ocean sulfur reservoirs. Our model indicates that, although the isotopic effects associated with phototrophic S oxidation are small, this process can significantly alter the overall isotopic composition of the system through the redistribution of mass. The trends produced in our models suggest that phototrophic S oxidation has the potential to mask the isotopic signal of sulfur compound disproportionation if greater than 33% of elemental sulfur in the system is re-oxidized to sulfate. This result has important consequences for interpretation of ancient S isotope records during periods of widespread photic zone euxinia, such as proposed for the mid-Proterozoic.