CRONUS-Earth: Half-way to the destination

FRED M. PHILLIPS

Earth & Environmental Science Department, New Mexico Tech, Socorro NM 87801 (phillips@nmt.edu)

In-situ cosmogenic nuclides are widely and increasingly used for to study earth-surface processes and its recent history, but these goals have been impared by inconsistencies in the understanding of the production systematics. The CRONUS-Earth Project was funded by the U.S. National Science Foundation with the objective of reconciling these discrepancies and providing a generally accepted basis for interpreting cosmogenic nuclide data. The Project is approximately half-way through its five-year duration and has achieved significant progress toward these goals. Areas of considerable uncertainty that have seen major advances include samples for ³⁶Cl production-rate calibration and spatial/temporal scaling of production. New paleomagnetic reconstructions have become available to complement improved scaling theory, resulting in testable predictions of global production patterns. The relation between geologically-based and neutron-monitor based scaling has been elucidated through monitoring of neutron-monitorresponse physics. Calibration samples have been collected in a rigorous fashion from sites associated with the shoreline of Lake Bonneville, Younger Dryas glacial sites in Scotland, and LGM glacial sites in the Puget Lowland of Washington State, a locality of particular importance for resolving discrepancies in ³⁶Cl production. Essential data and tools include improved production cross sections from neutron beam experiments and the release of a web-based cosmogenic calculator for the community.

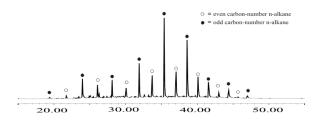
Extraction of biosignatures from weathered basalts

S.J.M. PHILLIPS AND J. PARNELL

Department of Geology and Petroleum Geology, University of Aberdeen, Aberdeen, AB24 3UE, UK (s.j.phillips@abdn.ac.uk)

There is a growing interest in the bio-load in weathered volcanic rocks. The relevance extends to Mars, where there are extensive regions of weathered basalt. Any bio-load in such rocks is likely to be very low, so it is essential to maximize the extraction efficiency for analysis. Analysis of suites of regolithic Tertiary (~60 Ma) basalt from Skye, Scotland, show the importance of particle size for optimal organic recovery.

Basalt from two localities was divided into fine ($<500\mu$ m)and coarse (>1cm)-grained fractions and surface contamination removed using acetone. They were then crushed and sieved into five different grain size fractions and subsequently soxhlet-extracted for 48 hours with 93:7 DCM/methanol.


The data show that a reduction in grain size results in a higher yield of extractable organic material (EOM) (Table 1). The n-alkane odd-over-even preference (OEP) exhibited by the GC-MS trace (Fig. 1) indicates that the extract is thermally immature, consistent with a recent biological (microbial) signature.

Glen Varradale basalt			Quiraing basalt	
	CG ^a	FG ^b	CG ^a	FG ^b
>425µm	0.001	0.002	0.002	0.005
425-125µm	0.001	0.004	0.001	0.006
125-63µm	0.002	0.005	0.003	0.006
63-38µm	0.002	0.005	0.004	0.007
<38µm	0.003	0.007	0.004	0.007

Table 1: EOM (%) for different grain size fractions.

^a Coarse-grained; ^b Fine-grained

Figure 1: GC-MS trace of the saturate fraction m/z 85 ion from the Quiraing basalt. Note marked OEP of n-alkane peaks.

The data emphasise the importance of analysing a fine grain size during processing of samples, including future Mars missions, where volcanic rocks may be targeted.