A ~4.3 Ga U-Pb age from lunar meteorite SaU169 and the chondritic Sm/Nd of the Moon

J.D. $KRAMERS^1$, E. $GNOS^2$, B.A. $HOFMANN^3$ and A. $AL-KATHIRI^1$

¹Institut für Geologie, Universität Bern, Baltzerstrasse 3, 3012 Bern, Switzerland (kramers@geo.unibe.ch)

²Muséum d'Histoire naturelle, Genève, 1 route de Malagnou, CP 6434, 1211 Genève 6, Suisse

(edwin.gnos@ville-ge.ch)

³Naturhistorisches Museum d. Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland

A remarkably consistent set of 142 Nd/ 144 Nd and 143 Nd/ 144 Nd data of lunar rocks reported by Rankenburg *et al.* (2006) provides evidence for a chondritic Sm/Nd ratio of the Moon. An apparent minor inconsistency is present for the most fractionated lunar rock in their data set, the Imbrian high-KREEP lunar meteorite SaU169, which yielded a subchondritic initial ϵ_{142Nd} value if this parameter was calculated for its reported SIMS zircon date of 3909 ± 13 Ma (Gnos *et al.*, 2004). The zircons dated were skeletal grains that crystallized from the impact melt.

We have carried out a leaching experiment on a 2 mg heavy mineral concentrate from the same impact melt, containing zircon and some merrilite, as follows. Step 1: 4N HNO₃, 25°c, 15 min. Step 2: 4N HNO₃, 100°C, 8 hrs. Step 3: Inverse aqua regia, 100°C, 16 hrs. Step 4: HF + 4N HNO₃, 150°C, 3 days. Isotope ratios of the 235 U + 202 Pb spiked leaches were measured on a Nu Instruments® MC-ICP-MS.

The final HF+HNO₃ step has ²⁰⁸Pb/²⁰⁶Pb = 0.37 and ²⁰⁶Pb/²⁰⁴Pb = 440 and dominantly reflects zircon. It yields a near-concordant U-Pb date of 4290 \pm 30 Ma. This is robust, but significantly older than the SIMS dates of 3909 \pm 13 Ma reported by Gnos *et al.* (2004), which give the age of the Imbrium impact melt. We suggest that our older age reflects a mixture of zircons crystallized from the impact melt, such as dated by Gnos *et al.* (2004), and much smaller, but collectively dominant crystals that might have survived impact melting and had a lunar crustal or KREEP source origin, with ages of 4300 Ma or older (Papike *et al.*, 1998).

If the ¹⁴²Nd/¹⁴⁴Nd ratio of Rankenburg *et al.* (2006) for SaU169 is extrapolated back to the age of 4.3 Ga suggested by our result, the initial ε_{142Nd} value plots precisely on the chondritic evolution curve, consistent with their models. This further strengthens the case for a chondritic Sm/Nd ratio of the Moon and therefore, terrestrial fractionation after the Giant Impact.

References

Gnos, E. et al. (2004), Science, 305, 657-659

- Rankenburg , K., Brandon, A.D., and Neal, C.R. (2006), *Science*, **312**, 1369-1372
- Papike, J.J., Ryder, G., and Shearer C.K. (1998), *Rev. Mineral.* **36**, 5.1–5.234.

Sr-isotopes and trace elements in feldspar and clinopyroxene: Tracer of magma mixing in gabbros from Uralian-Alaskan-type complexes in the Ural Mountains, Russia

J. KRAUSE^{1,2}, G.E. BRÜGMANN^{1,2} AND E.V. PUSHKAREV³

¹Inst. für Geowissenschaften, Universität Mainz, Becherweg 21, D-55099 Mainz, Germany

- ²Max-Planck-Institut f
 ür Chemie, Becherweg 27, D-55020 Mainz, Germany
- ³Inst. of Geology and Geochemistry, Russ. Acad. Sciences, 620151 Ekaterinburg, Russia

We applied LA-ICPMS techniques to determine Sr isotopes and trace element concentrations of rock forming minerals in gabbroic rocks from zoned mafic-ultramafic complexes (Nizhnii Tagil and Kytlym) in the Ural Mountains in Russia.

These gabbros have porphyric textures with clinopyroxene phenocrysts in a matrix of olivine, clinopyroxene and spinel \pm phlogopite. Based on the composition of additional matrix minerals two types of gabbro can be distinguished. One is silica saturated, contains plagioclase (An56-97) and in places orthopyroxene as matrix phases (bytownite gabbro). The second gabbro type is silica undersaturated and contains in the matrix plagioclase (An26-41) and pseudoleucite, a intergrowth of nepheline and K-feldspar (Or53-93).

Clinopyroxene of gabbros from Nizhnii Tagil and the western part of the Kytlym Complex is enriched in $LREE_N$ (4.4-33.6) relative to $HREE_N$ (1.4-8.4) and has high Sr concentrations (130-470 ppm). Phenocryst cores from silica undersaturated gabbros tend to have higher La/Lu (30-35) than those of silicate-saturated gabbros (La/Lu: 17-30). Towards the phenocryst rims the La/Lu increases up to 55 in the silica undersaturated gabbros monitoring the trend of a RFC magma chamber process. However, the large and continuous increase of La/Lu from silica-saturated to silica-undersaturated gabbro cannot be explained by this process.

The Sr isotopic composition of plagiclase in the silica undersaturated gabbros from Kytlym and Nizhnii Tagil (87 Sr/ 86 Sr 0.70407-0.70454 ±0.00004) is similar. Thus despite their spatial separation and very different magmatic lineage the parental magmas of the silica undersaturated gabbros appear to sample a homogenous mantle source.

In the silica undersaturated gabbro from the Kytlym Complex plagioclase has generally higher Sr concentrations (>2000 ppm) and 87 Sr/ 86 Sr (0.70410-0.70434 ±0.00002) than in that in silica undersaturated gabbros (Sr 700-1200 ppm; 87 Sr/ 86 Sr 0.70384-0.70405 ±0.00004). These features imply that silica saturated and undersaturated gabbros are derived from distinct parental magmas. The continuous increase of La/Lu and 87 Sr/ 86 Sr from silica-saturated to silica-undersaturated gabbro monitors the mixing of these two different parental magmas, even on thin section scale.