Linkage between Hg(II) pore water speciation and MeHg production in contaminated sediments

ANDREAS DROTT¹ AND ULF SKYLLBERG²

¹Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden (Andreas.Drott@sek.slu.se)

²Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden (Ulf.Skyllberg@sek.slu.se)

Introduction

The formation of toxic and biomagnifying mono methyl mercury (MeHg) in sediments has been proposed to be largely controlled by a passive uptake of dissolved, neutral Hg-sulfides in sulphate reducing bacteria. We have studied relationships between the concentration of dissolved neutral Hg-sulfides, modeled by equilibrium speciation calculations, and specific methylation rate constants (K_m , day⁻¹), as well as concentrations of MeHg (µg kg⁻¹), in sediments contaminated by Hg from the pulp and paper industry.

Materials and Methods

Sediments were sampled at seven sites in Sweden, covering a range of environments differing in salinity, total Hg concentration, annual air temperature sum, and organic matter content and quality. The potential methylation rate was determined by addition of isotopically enriched 201 Hg(II) followed by incubation at 23° C under N₂(g) for 48 h. Pore water Hg(II) speciation was modeled using measured concentrations of pore water Hg(II), pH, inorganic sulphides, halides and dissolved organic matter. Formation of HgS(s) and mixed Hg/FeS(s) was considered in models and determined independently by Hg EXAFS and S XANES.

Results and Discussion

The sum of dissolved neutral Hg-sulfide species $[Hg(SH)_2^0(aq)] + [HgS^0(aq)]$ was significantly, positively (p<0.001, n=20) correlated to K_m at depths of 5-100 cm in brackish water sediments. In contrast, total Hg, total Hgsulfides or $Hg(SR)_2$ (aq) in pore water gave no significant relationships with K_m . In two sets of freshwater sediments, both neutral Hg-sulfides and total Hg (because of an autocorrelation) gave significant relationships with K_m . Furthermore, the sum of neutral Hg-sulfides in pore water was significantly, positively correlated to total sediment MeHg (μ g kg⁻¹) in brackish waters (p<0.001, n=23), in southern, high-productivity freshwaters (p<0.001, n=20) as well as in northern, low-productivity freshwater (p=0.048, n=6). Our results confirm findings from laboratory experiments that concentrations of dissolved neutral inorganic Hg-sulfide species largely control Hg methylation rates, as well as accumulated MeHg concentrations, in contaminated sediments.

References

Drott A, Lambertsson L, Björn E, and Skyllberg U. (2007), *Env. Sci. Technol.* **41** 2270-2276.

Archean granites from the Rum Jungle Complex, Australia

KIRSTEN DRÜPPEL¹, ALISTAIR MC CREADY² AND EUGEN STUMPFL

¹TU Berlin, Sekr. ACK9, Ackerstr. 71-76, 13355 Berlin, (kirsten.drueppel@tu-berlin.de)

²Saskatchewan Research Council, 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, Canada, S7N 2X8

The 2.55 Ga Rum Jungle Complex (RJC), N Australia, comprises two Archean basement cores, the Rum Jungle and the Waterhouse domes that are surrounded by ortho- and paragneisses of the Palaeoproterozoic Pine Creek Orogen (PCO). The RJC predominantly comprises granite, syenite, quartz-monzonite, and quartz-monzodiorite intruding earlier schists and BIFs. A large number of uranium and base metal deposits have been discovered in black pelites of the PCO neighbouring the granitoid bodies.

Perthitic K-feldspar and quartz are the main minerals present in the granitoids, accompanied by variable amounts of plagioclase (An₀₋₂₃), magnetite, relict biotite, and accessories such as zircon, monazite, titanite, allanite, apatite, and ilmenite. Most of the samples underwent major post-emplacement mineralogical changes, e.g., formation of white mica at the expense of feldspar, replacement of titanite by rutile, and formation of biotite rims (X_{Mg} : 0.45-0.53) around magnetite. A pervasive alteration is characterised by sulphide mineralisation, chloritization of biotite and white mica, martitization of magnetite, formation of tourmaline, muscovite, and thoro-silicates along micro-shear zones.

The major element data of the granites show well-defined fractionation trends, involving a negative correlation of Si with Ti, Fe, Mg, Ca and P, whereas K increases in the same direction. The granitoids are metaluminous to peraluminous and alkalic to alkali-calcic in composition, the X_{Mg} is generally high (0.14–0.42). The chondrite-normalized trace element and REE plots of all granitoid samples are similar (troughs for Nb, Ta, Sr, P, Ti; (La/Yb)_{CN}: 7-115; Eu/Eu*: 0.2-0.8), suggesting that they were derived from the same parental magma. Remarkably, they have conspiciously high Th (8.6-123.3 ppm) and U (2.9-39.9 ppm) compared to the average Upper Crust. All samples, except three highly altered granitoids, can be defined as I-type granites (ASI 0.9-1.1).

Post-emplacement deformation and alteration are associated with secondary, low-salinity (0-14 wt.% NaCl equiv) to high-salinity fluid inclusions (15-38 wt.% NaCl equiv.) in magmatic quartz that display generally moderate homogenisation temperatures (107-384°C and 81-392°C, respectively). High-salinity inclusions also comprise minor gas-rich mixed H₂O-CO₂ inclusions. All fluid inclusions contain a variable number of presumably accidentally trapped solid inclusions. The fluids are suggested to have been derived by de-watering of metasediments of the PCO and to be modified by fluid-rock interactions during transport and metamorphism of the RJC and PCO at c. 1.8 Ga. This process might also be responsible for the formation of U and ore deposits in the vicinity of the RJC.