⁸⁷Sr/⁸⁶Sr of mafic microgranular enclaves in the Inagawa Granite, Ryoke belt, southwest Japan

M. TSUBOI

Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan (tsuboimot@hotmail.com)

The Inagawa Granite is located in the eastern part of the Cretaceous Ryoke metamorphic belt, southwestern Japan. The radiometric ages of the Inagawa Granite are: 63 - 72 Ma by K-Ar biotite method [1], c. 77 Ma with an initial 87 Sr/ 86 Sr ratio (SrI) = 0.7095 by Rb-Sr whole-rock isochron method [2], 71.5 \pm 2.4 Ma, 63.0 ± 2.0 Ma and 67.4 ± 1.4 Ma by Rb-Sr mineral whole-rock isochron method [3], and 81.9 ± 1.4 and 82.6 ± 1.8 Ma by CHIME monazite method [4].

The Inagawa Granite in the study area (Asuke area) is divided into four intrusive units; Type I (medium-grained hornblende-biotite tonalite, granodiorite and monzogranite), II (coarse-grained porphyritic hornblende-biotite granodiorite and monzogranite), III (coarse-grained hornblende-biotite granodiorite and monzogranite) and IV (coarse-grained hornblende-bearing biotite monzogranite) [5]. Sr isotopic study of apatite revealed the initial 87 Sr/ 86 Sr ratio heterogeneity (SrI = 0.7093 - 0.7107) within the pluton [3].

Type I and II granite often contains mafic microgranular enclaves (MME) of diorite. The enclaves are irregularly shaped and vary from 3 to 16 cm across. The boundary between host granite and the mafic enclaves is gradual. The enclave consists of subhedral to anhedral phenocrysts of plagioclase in a matrix dominated by plagioclase, quartz, biotite and clinopyroxene. In this study, ⁸⁷Sr/⁸⁶Sr ratios of mafic microgranular enclaves are determined to reveal the origin of MME and detailed magma processes of the pluton.

Initial ⁸⁷Sr/⁸⁶Sr ratio of the enclaves varies from 0.7086 to 0.7094. Combining initial Sr isotopic studies of MME with bulk rock analyses and field observations strongly supports the model [3] that the initial ⁸⁷Sr/⁸⁶Sr ratio heterogeneity within the pluton is caused by "high-SrI acidic magma" and "low-SrI mafic magma" mixing.

References

- Shibata, K., Miller, J.A., Yamada, N., Kawata, K., Murayama, M., Katada, M. (1962) *Bull. Geol. Surv. Japan.* 13, 317-320.
- [2] Kagami, H. (1973) J. Geol. Soc. Japan, 79, 1-10.
- [3] Tsuboi, M. (2005) Chem. Geol. 221, 157-169.
- [4] Suzuki, K., Adachi, M. (1998) J. Metamorph. Geol. 16, 23-37.
- [5] Nakai, Y. (1976) Bull. Aichi Univ. of Education 25, 97-112.

Large-scale fluid flow in a cold subduction-zone: SIMS Li-isotope study of jadeitite veins in Franciscan metagraywacke

T. TSUJIMORI, T. MORIGUTI, T. KUNIHIRO, K. KOBAYASHI AND E. NAKAMURA

The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori 682-0193, Japan (tatsukix@misasa.okayama-u.ac.jp)

Blueschist-facies metagraywacke blocks in the New Idria serpentinite body-the on-land analogue of active serpentinite diapirs in present-day forearc environments- of the Diablo Range, California have experienced fluid infiltration involving crack-seal jadeitite vein formation at HP-LT conditions (P> 1 GPa at T= ~250-300 °C: Tsujimori et al., 2007). The veins form as jadeite precipitates in the mm- to several cmwide fractures cutting host metagraywacke and show elongateblocky and/or radial microstructure with euhedral crystal terminations (Coleman, 1961). A single micro zircon in the vein yielded a SIMS U-Pb age of 129 Ma, which is similar to the timing of Franciscan blueschist metamorphism. The coarse-grained jadeite crystals in the vein are up to 99 mol.% jadeite with trace amounts of Sr (0.16-1.0 ppm), Zr (1.7-3.0 ppm), Ba (0.4-8.3 ppm), REEs (< 0.1 ppm) and Li (1.4-11 ppm). Crystal sections cut perpendicular to the c-axis exhibit concentric Li abundance oscillations. This growth pattern indicates rapid growth of jadeite from aqueous fluid without diffusional homogenization of Li either during or after the vein-formation. In situ SIMS Li-isotope analyses of jadeite in the veins gave very light δ^7 Li values (-33 to -25‰). The δ^7 Li value tends to be consistent despite changes in Li concentration from 1 to 10 ppm; the lightest recorded δ^7 Li is found at the rims. This very light Li-isotopic composition excludes seawater as a possible jadeitite-forming Na-rich fluid. The lack of evidence for diffusion also excludes diffusion-induced Li-isotope fractionation as an explanation for the light δ^7 Li values. The Li-isotope fractionation factor (Wunder et al., 2006) between clinopyroxene and LT fluids require a jadeitite-forming fluid with a very light Li-isotope composition (~-27‰) at forearc depths. Consequently, we propose a large-scale fluid flow in a cold subduction zone, in which the slab-derived Na-rich fluids with very low δ^7 Li from great depths can be transferred to the forearc environment along the slab-mantle interface; the deep fluids produce the jadeitite veins with very light δ^7 Li value in a blueschist grade subducting slab at forearc depths. Although the investigated jadeitite vein itself does not represent a perfect original fluid composition, Li-isotope studies of HP-LT metamorphic veins can result in new insights into large-scale fluid dynamics in subduction-zones.

References

- Coleman R. G. (1961) J. Petrol. 2, 209-247.
- Tsujimori T., Liou J. G. and Coleman R. G. (2007) *GSA Spec. Paper* **419**, 67-80.
- Wunder B., Meixner A., Romer R. L. and Heinrich W. (2006) Contrib. Mineral. Petrol. 151, 112-120