Mantle dynamics in the Hadean : Earth and Mars

B. MARTY¹, R. YOKOCHI² AND K. MARTI³

¹CRPG-CNRS, ,BP 20, 54501 Vandoeuvre Cedex, France, bmarty@crpg.cnrs-nancy.fr

² Dept. Earth & Environmental Sciences, Univ. Illinois at Chicago, Chicago, USA

³Dept. Chemistry, Univ. California at San Diego, USA

The initial thermal state of the Earth differed from the present-day one, due to energy release from accretion and enhanced radioactive production. Extinct (146 Sm- 142 Nd, T_{1/2} = 103 Ma [1,2]) and extant (146 Sm- 142 Nd, T_{1/2} = 106 Ga; 176 Lu- 176 Hf, T_{1/2} = 37 Ga [3]) radioactive systems indicate major silicate differentiation within the first 200 Ma. Xenon isotopes have evolved by the decay of ¹²⁹I to ¹²⁹Xe ($T_{1/2} = 16$ Ma) and by fission of ²⁴⁴Pu ($T_{1/2} = 82$ Ma) and ²³⁸U ($T_{1/2} = 4.45$ Ga) Ga to ¹³¹⁻¹³⁶Xe_f. New data for mantle plume samples [4] together with litterature data for MORB [5] indicate that : (i) the fist 100 Ma were characterized by massive loss of gases from the mantle, consistent with large-scale magmatism during magma ocean episodes; (ii) whole mantle convection prevailed in the Hadean, so that isolation between a MORBlike mantle and a plume reservoir must have occurred later on, consistent with a recent model based on He isotopes [6]; (iii) atmospheric escape took place for about 200 Ma. During the Hadean, mantle convection was one order of magnitude more active than during the rest of the Earth's history. This activity might have slowed down abruptally by the end of this period. Mars, as sampled by Martian meteorites, contains also xenon from the decay of ¹²⁹I and from the fissions of ²⁴⁴Pu and of 238 U [7]. After correction for the U contribution to fissiogenic Xe (refs. [4,5] for the Earth and and [7] for Mars), Mars and Earth have apparently comparable ¹²⁹I/²⁴⁴Pu ratios that are both much lower than the chondritic value. This observation suggests that these two planets had comparable magmatic histories during the first 100 Ma, despite drastic differences in impact histories and sizes, and highlight the role of ocean magmas during this period of time. However, Mars retained much more fission Xe from ²⁴⁴Pu than the Earth, thus Mars did not experience the intensive convection regime that characterized the Hadean Earth.

References

- [1] Boyet M. and Carlson R. W. (2005) Science 309, 576-581
- [2] Caro G., Bourdon B., Birck J.L. and Moorbath S. (2003) *Nature* 423, 428-432
- [3] Harrison T.M. et al. (2005) Science 310, 1947-1950
- [4] Yokochi R. and Marty B.(2005) EPSL 238, 17-30
- [5] Kunz J., Staudacher T. and Allègre C. J. (1998) *Science* 280, 877-880
- [6] Class C. and Goldstein C.L. (2005) Nature 436, 1107-1112
- [7] Mathew K.J., Marty B., Marti K. and Zimmermann L. (2003) *EPSL* **214**, 27-42.